Introduction

This vignette is intended to introduce the user to fredr functions for the Releases endpoint of the FRED API.

FRED series are added to the FRED database over time in releases. Each FRED release is assigned an integer identifier. The following examples illustrate usage of the Releases endpoint functions in fredr.

Get all releases of economic data

The function fredr_releases() returns a set of all FRED releases matching the request. The data returned is a tibble in which each row represents a FRED release. The default call returns all FRED releases:

fredr_releases()
#> # A tibble: 309 × 7
#>       id realtime_start realtime_end name              press_release link  notes
#>    <int> <chr>          <chr>        <chr>             <lgl>         <chr> <chr>
#>  1     9 2023-04-16     2023-04-16   Advance Monthly … TRUE          http… "The…
#>  2    10 2023-04-16     2023-04-16   Consumer Price I… TRUE          http…  NA  
#>  3    11 2023-04-16     2023-04-16   Employment Cost … TRUE          http…  NA  
#>  4    13 2023-04-16     2023-04-16   G.17 Industrial … TRUE          http…  NA  
#>  5    14 2023-04-16     2023-04-16   G.19 Consumer Cr… TRUE          http…  NA  
#>  6    15 2023-04-16     2023-04-16   G.5 Foreign Exch… TRUE          http…  NA  
#>  7    17 2023-04-16     2023-04-16   H.10 Foreign Exc… TRUE          http…  NA  
#>  8    18 2023-04-16     2023-04-16   H.15 Selected In… TRUE          http…  NA  
#>  9    19 2023-04-16     2023-04-16   H.3 Aggregate Re… TRUE          http… "The…
#> 10    20 2023-04-16     2023-04-16   H.4.1 Factors Af… TRUE          http…  NA  
#> # ℹ 299 more rows

Get release dates for all releases of economic data.

The function fredr_releases_dates() returns a set of release dates for all FRED releases. The data returned is a tibble where each row represents a release date for a release. For example, to get all release dates (up to the limit of 1000) ordered by descending release date:

fredr_releases_dates()
#> # A tibble: 1,000 × 3
#>    release_id release_name                                          date      
#>         <int> <chr>                                                 <chr>     
#>  1         72 Daily Treasury Inflation-Indexed Securities           2023-04-17
#>  2        502 Euro Short Term Rate                                  2023-04-17
#>  3        101 FOMC Press Release                                    2023-04-17
#>  4        504 Historical Overnight AMERIBOR Unsecured Interest Rate 2023-04-17
#>  5        484 Key ECB Interest Rates                                2023-04-17
#>  6        287 Nikkei Indexes                                        2023-04-17
#>  7        445 Secured Overnight Financing Rate Data                 2023-04-17
#>  8        483 SOFR Averages and Index Data                          2023-04-17
#>  9        492 SONIA Interest Rate Benchmark                         2023-04-17
#> 10        441 Coinbase Cryptocurrencies                             2023-04-16
#> # ℹ 990 more rows

To instead order the results by ascending release ID:

fredr_releases_dates(
  sort_order = "asc",
  order_by = "release_id"
)
#> # A tibble: 1,000 × 3
#>    release_id release_name                                       date      
#>         <int> <chr>                                              <chr>     
#>  1          9 Advance Monthly Sales for Retail and Food Services 2023-01-18
#>  2          9 Advance Monthly Sales for Retail and Food Services 2023-02-15
#>  3          9 Advance Monthly Sales for Retail and Food Services 2023-03-15
#>  4          9 Advance Monthly Sales for Retail and Food Services 2023-04-14
#>  5         10 Consumer Price Index                               2023-01-12
#>  6         10 Consumer Price Index                               2023-02-10
#>  7         10 Consumer Price Index                               2023-02-14
#>  8         10 Consumer Price Index                               2023-03-14
#>  9         10 Consumer Price Index                               2023-04-12
#> 10         11 Employment Cost Index                              2023-01-31
#> # ℹ 990 more rows

Get a release of economic data

The function fredr_release() returns data for a single FRED release specified by release_id. The data returned is a tibble where each row represents the specified release. For example, to get release data for the Employment Cost Index release:

fredr_release(release_id = 11L)
#> # A tibble: 1 × 6
#>      id realtime_start realtime_end name                  press_release link    
#>   <int> <chr>          <chr>        <chr>                 <lgl>         <chr>   
#> 1    11 2023-04-17     2023-04-17   Employment Cost Index TRUE          http://…

Get release dates for a single release of economic data

The function fredr_release_dates() returns a set of release dates for a single FRED release specified by release_id. The data returned is a tibble where each row represents a release date for the release specified. For example, to get release dates for the Employment Cost Index release:

fredr_release_dates(release_id = 11L)
#> # A tibble: 117 × 2
#>    release_id date      
#>         <int> <chr>     
#>  1         11 1996-10-29
#>  2         11 1997-01-28
#>  3         11 1997-04-29
#>  4         11 1997-07-29
#>  5         11 1997-10-28
#>  6         11 1998-01-27
#>  7         11 1998-04-30
#>  8         11 1998-07-30
#>  9         11 1998-10-29
#> 10         11 1999-01-28
#> # ℹ 107 more rows

Get the series in a release of economic data

The function fredr_release_series() returns a set of series belonging to the FRED release specified by release_id. The data returned is a tibble where each row represents a series in the release specified. For example, to get series in the Employment Cost Index release:

fredr_release_series(release_id = 10L)
#> # A tibble: 1,000 × 16
#>    id       realtime_start realtime_end title  observation_start observation_end
#>    <chr>    <chr>          <chr>        <chr>  <chr>             <chr>          
#>  1 CPIAPPNS 2023-04-17     2023-04-17   Consu… 1914-12-01        2023-03-01     
#>  2 CPIAPPSL 2023-04-17     2023-04-17   Consu… 1947-01-01        2023-03-01     
#>  3 CPIAUCNS 2023-04-17     2023-04-17   Consu… 1913-01-01        2023-03-01     
#>  4 CPIAUCSL 2023-04-17     2023-04-17   Consu… 1947-01-01        2023-03-01     
#>  5 CPIEDUNS 2023-04-17     2023-04-17   Consu… 1993-01-01        2023-03-01     
#>  6 CPIEDUSL 2023-04-17     2023-04-17   Consu… 1993-01-01        2023-03-01     
#>  7 CPIENGNS 2023-04-17     2023-04-17   Consu… 1957-01-01        2023-03-01     
#>  8 CPIENGSL 2023-04-17     2023-04-17   Consu… 1957-01-01        2023-03-01     
#>  9 CPIFABNS 2023-04-17     2023-04-17   Consu… 1967-01-01        2023-03-01     
#> 10 CPIFABSL 2023-04-17     2023-04-17   Consu… 1967-01-01        2023-03-01     
#> # ℹ 990 more rows
#> # ℹ 10 more variables: frequency <chr>, frequency_short <chr>, units <chr>,
#> #   units_short <chr>, seasonal_adjustment <chr>,
#> #   seasonal_adjustment_short <chr>, last_updated <chr>, popularity <int>,
#> #   group_popularity <int>, notes <chr>

Note the parameters available to filter series belonging to a release:

fredr_release_series(
  release_id = 10L,
  filter_variable = "frequency",
  filter_value = "Monthly",
  order_by = "popularity",
  sort_order = "desc",
  limit = 10L
)
#> # A tibble: 10 × 16
#>    id        realtime_start realtime_end title observation_start observation_end
#>    <chr>     <chr>          <chr>        <chr> <chr>             <chr>          
#>  1 CPIAUCSL  2023-04-17     2023-04-17   Cons… 1947-01-01        2023-03-01     
#>  2 CPILFESL  2023-04-17     2023-04-17   Cons… 1957-01-01        2023-03-01     
#>  3 CUSR0000… 2023-04-17     2023-04-17   Cons… 1953-01-01        2023-03-01     
#>  4 CUUR0000… 2023-04-17     2023-04-17   Cons… 1914-12-01        2023-03-01     
#>  5 CPIAUCNS  2023-04-17     2023-04-17   Cons… 1913-01-01        2023-03-01     
#>  6 CUUR0000… 2023-04-17     2023-04-17   Cons… 1913-01-01        2023-03-01     
#>  7 CUUR0000… 2023-04-17     2023-04-17   Cons… 1947-03-01        2023-03-01     
#>  8 CUSR0000… 2023-04-17     2023-04-17   Cons… 1953-01-01        2023-03-01     
#>  9 CPIUFDSL  2023-04-17     2023-04-17   Cons… 1947-01-01        2023-03-01     
#> 10 CPIENGSL  2023-04-17     2023-04-17   Cons… 1957-01-01        2023-03-01     
#> # ℹ 10 more variables: frequency <chr>, frequency_short <chr>, units <chr>,
#> #   units_short <chr>, seasonal_adjustment <chr>,
#> #   seasonal_adjustment_short <chr>, last_updated <chr>, popularity <int>,
#> #   group_popularity <int>, notes <chr>

Get the FRED tags for a release

The function fredr_release_tags() returns a set of tags assigned to series belonging to the FRED release specified by release_id. The data returned is a tibble where each row represents a tag. For example, to get the geographic tags assigned to series in the Consumer Price Index release:

fredr_release_tags(
  release_id = 10L,
  tag_group_id = "geo",
  order_by = "popularity",
  sort_order = "desc"
)
#> # A tibble: 65 × 6
#>    name  group_id notes                    created       popularity series_count
#>    <chr> <chr>    <chr>                    <chr>              <int>        <int>
#>  1 usa   geo      United States of America 2012-02-27 1…        100         4714
#>  2 ca    geo      California               2012-02-27 1…         62          286
#>  3 tx    geo      Texas                    2012-02-27 1…         59          196
#>  4 fl    geo      Florida                  2012-02-27 1…         59          170
#>  5 ny    geo      New York                 2012-02-27 1…         55           94
#>  6 pa    geo      Pennsylvania             2012-02-27 1…         51          260
#>  7 ga    geo      Georgia (U.S. state)     2012-02-27 1…         51           96
#>  8 wi    geo      Wisconsin                2012-02-27 1…         50          222
#>  9 il    geo      Illinois                 2012-02-27 1…         50          146
#> 10 oh    geo      Ohio                     2012-02-27 1…         50          164
#> # ℹ 55 more rows

The function fredr_release_related_tags() returns a set of tags assigned to series belonging to the FRED release specified by release_id that are related to tags specified in tag_names. The data returned is a tibble where each row represents a related tag. For example, to get frequency tags assigned to series in the Consumer Price Index release that are also related to the tag bls and not the annual tag:

fredr_release_related_tags(
  release_id = 10L,
  tag_names = "bls",
  tag_group_id = "freq",
  exclude_tag_names = "annual",
  order_by = "popularity",
  sort_order = "desc"
)
#> # A tibble: 2 × 6
#>   name       group_id notes created                popularity series_count
#>   <chr>      <chr>    <chr> <chr>                       <int>        <int>
#> 1 monthly    freq     ""    2012-02-27 10:18:19-06         94         2168
#> 2 semiannual freq     ""    2012-02-27 10:18:19-06         34         1920

Get the sources for a release of economic data

The function fredr_release_sources() returns a set of FRED sources for the FRED release specified by release_id. The data returned is a tibble where each row represents a source. For example, to get the sources for the Consumer Price Index release:

fredr_release_sources(release_id = 10L)
#> # A tibble: 1 × 5
#>      id realtime_start realtime_end name                            link        
#>   <int> <chr>          <chr>        <chr>                           <chr>       
#> 1    22 2023-04-17     2023-04-17   U.S. Bureau of Labor Statistics https://www…

Get release table trees for a given release

The function fredr_release_tables() returns a set of FRED release table trees for the FRED release specified by release_id. The data returned is a tibble where each row represents an element of the table tree’s children: the column name gives the element ID and the column value stores data nodes for the element (e.g. element ID, release ID, parent ID, element type, element name, children, etc.). For example, to get the table tree for the Consumer Price Index release:

cpi_tbl <- fredr_release_tables(release_id = 10L)
cpi_tbl
#> # A tibble: 2 × 2
#>   name  value           
#>   <chr> <list>          
#> 1 34481 <named list [9]>
#> 2 36712 <named list [9]>

The above table has two elements: 34481 and 36712. Inspect an element (a list) by selecting its row and unnesting the row element value using tibble::deframe():

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(tibble)

cpi_tbl %>%
  slice(2) %>%
  deframe()
#> $`36712`
#> $`36712`$element_id
#> [1] 36712
#> 
#> $`36712`$release_id
#> [1] 10
#> 
#> $`36712`$series_id
#> NULL
#> 
#> $`36712`$parent_id
#> NULL
#> 
#> $`36712`$line
#> NULL
#> 
#> $`36712`$type
#> [1] "section"
#> 
#> $`36712`$name
#> [1] "Consumer Price Index Special Aggregate Indices"
#> 
#> $`36712`$level
#> [1] "0"
#> 
#> $`36712`$children
#> list()

You can extract the tree hierarchy of a deeper element in the table by specifying an element_id. From the previous example, if you wanted to get the subtree for child element 36712 of the Consumer Price Index table:

fredr_release_tables(
  release_id = 10L,
  element_id = 36712L
)
#> # A tibble: 4 × 2
#>   name  value           
#>   <chr> <list>          
#> 1 36713 <named list [9]>
#> 2 36801 <named list [9]>
#> 3 37003 <named list [9]>
#> 4 37691 <named list [9]>