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Abstract

We empirically examine the extent to which peer effects influence the private provision of
public goods. In the case of public information goods, peer contribution may facilitate or
otherwise incentivize further contribution from others, effectively subsidizing private provision.
Using the setting of Open Source Software (OSS) contribution, we first utilize a reduced form
approach to derive causal estimates of net peer effects in public goods contribution by exploiting
a peers-of-peers identification strategy. We next develop a structural model of peer-influenced
public good provision that both (1) separates extensive and intensive margin contribution deci-
sions and (2) decomposes contribution into marginal private benefits and costs. We apply these
methodologies using a sample of peer contribution histories for 2,287 OSS projects hosted on
the GitHub collaboration platform. Both reduced form and structural approaches suggest peer
effects are much stronger along the extensive margin than the intensive margin. Contemporane-
ous intensive margin effects, while heterogenous across time and projects, are small and centered
around zero, suggesting that strategic complementarity and substitution in peer contribution
likely offset one another. Our counterfactual analysis suggests (extensive margin) peer effects
account for nearly 56% of cumulative aggregate contribution for our sample, which translates
to a value-added of 1–1.5 million software developer labor hours. These results support the no-
tion that OSS is largely developed by disproportionate efforts from smaller groups of dedicated
core maintainers, who integrate incremental contributions from the wider community, and casts
doubt on the promise for peer effects alone to deliver sustained maintenance labor to individual
projects.

https://drive.google.com/file/d/1AX2HY18d8kPSPqLExT3k3mdPSS8z7Q4q/view?usp=sharing
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1 Introduction

Open Source Software (OSS) projects are public information goods produced through incremental

efforts of individual contributors.12 Interested parties can freely download software code for their

own use and can also propose contributions to the original maintainer of the project3. The very

existence of OSS rebukes conventional wisdom on privately produced public goods4 and various

explanations have been offered to rationalize their provision, from signalling (Lerner and Tirole,

2002), (impure) altruism (Andreoni, 1990), need satiation (Athey and Ellison, 2014), and insti-

tutional structures imposed by self-organizing local communities (Ostrom, 1990; Benkler, 2002).

In this study we examine an alternative channel through which widespread contribution to public

OSS projects may be achieved: peer effects. Peer behavior can potentially affect the net returns to

public good contribution through various channels, improving returns and ameliorating contribu-

tion costs. Can peer influence drive heterogeneity in preferences and contribution costs, effectively

subsidizing the private provision of public goods?

Consider the quandary faced by maintainers of OSS projects.5 Sindre Sorhus is a superstar

OSS contributor. As of December 2021, he works on OSS full-time and is the author and primary

maintainer of over 1,000 OSS projects (Sorhus, 2021). As a prolific maintainer, Sorhus interacts with

the wider community of OSS contributors and has personally reviewed tens of thousands of proposed

contributions to his projects. Sorhus once reflected that “∼ 80% of contributors doesn’t [sic] know

how to resolve a merge conflict, almost no one writes a good pull request titles, ∼ 30% don’t run

1Our use of the term “open source” requires some definition. In a general sense, OSS is a computer technology
for which the underlying source code is made publicly available under a license permitting use, modification, and
subsequent redistribution of derived products (Open Source Initiative, 2007). While there are many variations on the
specifics of this definition, the most important feature of software projects considered in this study is that (1) they
are distributed under some permissive OSS license (GitHub, Inc., 2022) and (2) they are collaborative projects that
allow for modifications to be submitted from a contributor base wider than the original developer.

2Throughout this chapter, we will use the terms “contributor”, “developer”, “individual”, and “agent” inter-
changeably in reference to the population of study.

3For example, a user may wish to propose a new feature or fix a software fault (i.e., a “bug”).
4Since contribution is costly, agents choose their contribution levels both with respect to private benefits of

contribution and the level of the OSS public good delivered by the efforts of their peers. If the net benefit of
contribution is negative, an individual may simply opt to free-ride on the efforts of others, leading to misallocation
of contribution away from an efficient equilibrium.

5In this chapter, we will at times classify agents in the OSS public goods setting according to their level of
participation in what is known as the “contributor funnel” (McQuaid, 2018). Users of an OSS project may utilize a
software product but do not contribute to it. A subset of users are contributors and allocate some contribution effort
to developing the project. A subset of contributors are maintainers, typically agents responsible for a large share of
project contribution and may also have decision-making power over what proposed contributions are integrated into
the project. We will also sometimes refer to these agents as developers.
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tests locally before submitting a [pull request]”, and “∼ 40% don’t include docs/tests” (Sorhus,

2019). In essence, Sorhus’s concern centers around the lack of quality project contributions from

his peers. Software development in general is a complex, ever-changing process and many potential

contributors simply may lack the skills to contribute effectively. As opposed to shouldering the

entire burden of OSS project development6, to what extent can the contributions efforts of skilled

contributors like Sorhus actually improve the productivity of their peers?7

A key difference between OSS projects and other public goods is that production of OSS

generates both a community of contributors and a set of auxiliary information goods around the

project that can potentially reduce subsequent costs of contribution. For example, OSS project

maintainers provide assistance and guidance to new contributors by responding to inquiries via

mailing lists, message boards, or real-time chat channels.8 Moreover, OSS communities typically

archive the history of such project-related interactions between contributors, creating a publicly ac-

cessible knowledge base for project development.9 OSS projects typically feature documentation10

that gives a broad overview of the project.11, provides detailed information on how the software

operates at a technical level, and suggest how to properly propose new contributions.12 Popular

OSS projects can also generate a significant amount of buzz outside the contribution platform it-

self, from community-authored articles demonstrating usage to external forums13 where users can

request help for various programming and software tasks. The combination of these features form

the basis for peer effects on contributor productivity. Contribution activity itself can generate a

form of “digital capital”14 for subsequent OSS production, working to both lower the initial fixed

6While the use of OSS is itself non-rival, the contribution bandwidth of project maintainers is not (Brown, 2018).
7In other words, how do maintainers induce project users down the “contributor funnel” into becoming productive,

recurring contributors?
8Users who receive feedback on their contribution from project maintainers are far more likely to return to

contribute in the future (Sholler et al., 2019).
9Similarly, OSS projects are overwhelmingly managed using a version control system, making the entire projects

incremental development history public record.
10Note that documentation is generated by developer labor and a contribution to the project itself.
11Examples of high-level documentation include project README files bundled with the project source code, “wiki”

pages, and long-form vignettes on project usage. For an example of best practices on how these are actually integrated
into an OSS project, see Sections 8, 10, and 11 of Wickham (2015).

12For example, a project maintainer may include a “contribution template” so that novice contributors avoid
common pitfalls for new project contributions. Referring back to the example of Sindre Sorhus, this improves the
quality of the proposed change and reduces the “back-and-forth” between maintainer and contributor.

13A relevant example is the programming-focused question and answer website Stack Overflow which has been
described as a sister community to OSS collaboration platforms such as GitHub (Eghbal, 2020).

14Or more accurately, human capital that is recorded or codified as a public information good and then used as an
input in the production of additional public goods.
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cost of contribution for potential contributors and to make current contributors more productive.

Hence, in contrast with many conventional public goods settings, there is scope for individual and

peer contribution to become strategic complements.

Salient examples of OSS begin to illustrate the scale at which developers have contributed

labor towards the production of complex public information goods. As each OSS developer’s

“contribution bandwidth” is both scarce and costly, the significance of peer effects that drive

contributor labor can be measured naturally in terms of the opportunity cost of a developer’s

time: what is the equivalent private market labor expenditure to finance the development of large

OSS projects? Consider the case of the Linux Kernel. Regarded as the largest collaborative OSS

project in history, the Linux Kernel was first released in 1991 by Linus Torvalds and has become

the most widely used operating system basis for web servers, mobile devices, and high performance

computing infrastructure. As of September 2021, the Linux Kernel has amassed over 31.3 million

single lines of code from 23,927 distinct contributors over the past three decades. Using standard

methods from software engineering cost estimation, it would take nearly 70 million person-hours

to rewrite the entire kernel from scratch, which would cost over $1.05 billion today.1516 While

estimates for the use-valuation of OSS is an important ongoing area of research (Greenstein and

Nagle, 2014; Nagle, 2019), in this study we seek to characterize the extent to which peer effects can

mitigate production costs of OSS public goods.

We seek to empirically assess peer effects on public good production using the context of OSS.

Our methodology is organized into two phases. In the first phase, we build intuition on the magni-

tude of net peer effects in OSS contribution using a reduced form approach. To address concerns

over endogeneity, we develop an identification strategy to determine to what extent individual ef-

fort levels are influenced by the contribution levels of their peers. Specifically, we instrument the

likely endogenous contribution effort of an agent’s peers in a given project with the effort levels of

the agent’s “peers-of-peers” defined by common contribution in outside projects.17 The instrument

operates by changing the relative incentives for peers to contribute to a given project by varying the

incentives in external projects. This approach allows us to determine whether individual and peer

15Estimated (conservatively) using the COCOMO model of software development cost estimation developed by
Boehm (1981) and the software utility scc (Source: https://github.com/boyter/scc).

16The median annual salary for software developers in the United States for 2020 was $110,140 ($52.95 per hour)
(U.S. Bureau of Labor Statistics, 2021).

17Details for this identification strategy are given in Section ?? and Figure 1.
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contribution are strategic complements or substitutes on net, conditional on the set of developers

that contribute at all. In the second phase, we develop a structural model of OSS contribution to

pin down the microeconomic foundations for contributor behavior. We seek to place emphasis on

disentangling contribution decisions along the extensive versus intensive margin and integrate peer

influence into both decisions. To this end, we embed a micro-founded model of private public good

provision (Bergstrom et al., 1986) into the selection model of (Heckman, 1979). The structural

approach facilitates the recovery of individual productivity parameters, allowing us to character-

ize the welfare of particular contribution profiles and conduct counterfactual analysis. Our main

counterfactuals of interest estimates the value of aggregate contribution added by peer effects.

We apply this methodological framework in an empirical analysis, focusing on the context

of Open Source Software contribution. We use individual-level contribution data for a random

sample of 2,287 highly collaborative OSS projects hosted on the GitHub collaboration platform.

The remainder of this chapter is organized as follows. We first provide additional background on

OSS development in Section ??. Next, we survey segments of related literature in Section ??. We

introduce the empirical setting in Section ??, describing OSS contribution activity on the GitHub

platform and giving an overview of data included in the empirical sample. We then develop a

reduced form strategy to estimate peer effects in Section ??. With high-level insight on net peers

effects in hand, we next develop a structural model of public good contribution with extensive and

intensive margin peer effects in Section ??. We outline an estimation strategy, present estimation

results, and conduct counterfactual analysis to measure the value of contribution generated by

distinct peer effects channels. Finally, we summarize and interpret our findings in Section ?? and

discuss promising directions subsequent research.

2 Background

OSS projects are typically organized around software code repositories, publicly accessible websites

that host the project’s source code and provide collaboration functionality18. Users can view and

18For example, Figure 2 depicts a snapshot of the web user interface for the bootstrap project’s GitHub repository,
a popular JavaScript framework for web development: https://github.com/twbs/bootstrap. The history of all user
contributions to the pandas codebase can be viewed here: https://github.com/twbs/bootstrap/commits/main. The
repository contains a README with the source code, a document that contains links to detailed documentation,
installation and usage notes, and guidance for prospective contributors.
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download the source code of OSS projects for their own use. They can also contribute to the OSS

project’s codebase. A typical contribution pattern works as follows: (1) a user downloads a copy

of the source code, (2) makes a series of incremental changes to the codebase, and (3) submits a

request to the owner of the original OSS repository to integrate their changes. Due to the open

nature of the code and the permissiveness of OSS licenses in general, there is little to prevent a

user from simply copying the codebase of an existing project into a new OSS good19. However,

users can distribute contribution costs and share knowledge by working collaboratively with peers.

It is therefore reasonable to assume there exist strong motivations for distributed users to rally

around and contribute to particular OSS projects instead of splintering off into isolated endeavors,

creating “digital communities” around OSS projects characterized by social norms and stocks of

project-specific information capital.

Peer effects have long been discussed as a driving force behind the “success” of particular

OSS projects. An early discussion on net effect of peer influence on open software contribution

began with the conjecture by Brooks Jr (1995), who observed that the addition of developers to a

software project slows down the pace of development. In a response to the so-called “Brook’s Law”,

Raymond (1999) countered this postulate with the example of OSS collaboration and “Linus’s Law”

that roughly states that the likelihood that faults in a software’s codebase will be identified and

fixed rises with the number of users and contributors working with it. Raymond (1999) argues that

the proliferation of highly collaborative, decentralized OSS projects is itself a rebuke of Brook’s

Law.

As the production of OSS can clearly be subject to peer influence, a core impetus for this

study is to disentangle the various channels through which peer effects operate and estimate the

empirical implications for these effects on equilibrium contribution. In theory, peer effects can have

both negative and positive impacts the level of privately provided OSS. What anecdotal evidence

do we have for either (1) free-riding or (2) productivity externalities in OSS development? With the

rise of OSS use, a common concern amongst OSS project maintainers is over-subscription of their

projects: users who flood communication channels with support requests without contributing the

fix themselves (Eghbal, 2020). A related concern is that many OSS projects originating from small

19This process is known as “forking” in the OSS community. Forks of original projects can also become active
contribution communities in their own right. This typically happens when there is a sufficient number of contributors
interested in pursing a different direction of development.
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groups of contributors are widely used as part of the “digital infrastructure” (Eghbal, 2016) that

underpins modern information and communication technologies. Consider the case of OpenSSL,

an encryption library that by some estimates is used by two-thirds of public facing web servers

to secure private information (The OpenSSL Project Authors, 2021). In 2011 a bug, now known

as Heartbleed, was introduced into the OpenSSL codebase and was not discovered until 201420,

exposing a vast swath of internet communications that were previous thought to be secure. The

estimated cost to simply limit the extent of this vulnerability was estimated to be over $500 million

USD (Kerner, 2014) and does not consider the cost of any secure data lost through the exploit.

The OpenSSL team at the time “never had more than three to four core developers” overseeing

more than a half a million lines of code on an annual donation budget of $2,000 USD (Oberhaus,

2019). Whether it was the sheer size and complexity the OpenSSL codebase or the preferences

of the maintenance team deterred potential contributors, the fact that an OSS project serving

as a critical component of internet infrastructure did not receive more attention from the wider

community of users who rely on it ought to be cause for concern for OSS sustainability.

While free-riding on OSS contribution is likely prevalent and perhaps inescapable when con-

sidering a project’s user-base in the broadest sense21, it may also be the case that increased partic-

ipation in OSS distributes the joint cost contribution and improves individual productivity. How

can the development of OSS itself either make subsequent contribution less costly or induce the

marginal free-rider to contribute? Recommended practices in software engineering encourage de-

velopers to include documentation, testing frameworks, and use automated processes whenever

possible (Fogel, 2005). Documentation explains the functionality and inner workings of software

code in plain language, making it easier for both users and potential contributors to work with the

software. Testing frameworks ensure the code functions as intended and are essential for a large

collaborative OSS project. Continuous Integration (CI), a form of automation in the integration

and testing of changes to software projects, facilitates a greater volume of contribution and has

been shown to allow software projects to release22 more frequently (Hilton et al., 2016). Invest-

ments in these features lower the cost burden of maintenance and lower the barriers to entry for

20Consequently, some have pointed to the Heartbleed exploit as a repudiation of Linus’ Law (Meneely et al., 2014).
21Modern software projects, both proprietary and open source, typically borrow 70 to 90% of their functionality

OSS components (Nagle et al., 2022).
22In software development, a “release” is a particular version of the project distributed to users. In an appeal to

Linus’ Law, OSS proponents such as Raymond (1999) and Fogel (2005) encourage frequent releases.
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new contributors. Moreover, active contributors in OSS communities often provide “non-code”

contribution services to the project, answering user inquiries, reviewing and integrating proposed

changes, establishing design principles and community guidelines, and other functions peripheral to

contributing code. It’s natural to imagine that all else equal, a potential contributor would prefer

allocating their contribution bandwidth to an OSS project with sociotechnical infrastructure that

makes it easier to work with.

The collaborative and decentralized nature of OSS development suggests a setting rife with

intricate peer effects. The wider population of OSS users may lack the skills or resources needed

to contribute to OSS codebases and may simply free-ride on the contributions of more prolific

developers. At the same time, OSS contribution itself generates an abundance of features that

reduce the cost of and further incentivize wider OSS participation. We use this study as an

opportunity to develop a microeconomic framework decomposing these forces and to empirically

estimate their implications.

3 Related Literature

We review a subset of academic literature that can be divided into several distinct strands: (1)

motivations for OSS contribution, (2) the private provision of public goods, and (3) peer effects.

3.1 Why Contribute to OSS?

Although initially puzzling, the existence and proliferation of OSS goods has been studied through

an economic lens for over two decades (Lerner and Tirole, 2002). A common interest in early

research on the economics of OSS focuses on the incentives for participation in public good pro-

duction by both individuals and profit-maximizing firms. Different hypotheses have been offered

to explain OSS provision and contribution behavior:

• Individual private benefits: intrinsic motivation (Lakhani and Wolf, 2003), need satiation

(Bessen, 2006; Athey and Ellison, 2014), signalling and status (Glazer and Konrad, 1996;

Lerner and Tirole, 2002; Roberts et al., 2006), “warm glow” (Andreoni, 1990), option value

of modular codebases Baldwin and Clark (2006), permissive licensing (Fershtman and Gandal,

2004; Lerner and Tirole, 2005; Fershtman and Gandal, 2007).
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• Social effects: pure altruism (Bonaccorsi and Rossi Lamastra, 2003), social norms and re-

ciprocal altruism (Raymond, 1999; Bergquist and Ljungberg, 2001; Benkler, 2002), project

productivity (Fershtman and Gandal, 2011)

• Strategic motivations for firms: innovation, market power (Bonaccorsi et al., 2006), labor

search23, cost reduction (Andersen-Gott et al., 2012)

Some closely related work examines contribution to OSS and open source content in general

empirically. Fershtman and Gandal (2004) find that permissive software licenses induce greater lev-

els of contribution. Hahn et al. (2008) find that OSS developers are more likely to join projects with

past collaborators. Fershtman and Gandal (2011) demonstrate an empirical relationship between

the success of an OSS project, measured in downloads, and the extent to which its contributors work

in other common projects, suggesting the existence of both direct and indirect project knowledge

spillovers. In contrast, the present study uses microdata to measure peer effects on contribution at

the individual level. Several authors have used the context of Wikipedia to study peer effects within

collaborative production of open content. Exploiting blockages of Chinese language Wikipedia for

mainland China, Zhang and Zhu (2011) find that pro-social peer effects are increasing in the num-

ber of peers: individuals contribute more to Wikipedia when they have more peers. Slivko (2014)

use an indirect peers strategy to find modest evidence for positive, intensive margin peer effects

amongst frequent contributors.

3.2 Private Public Good Provision

Seminal work seeks to rationalize private provision of public goods. While the canonical public

goods model of Samuelson (1954) suggests strong incentives to free-ride on the contributions of

others, heterogeneity in both preferences and the marginal cost of provision can explain positive

levels of private provision in many contexts (Tiebout, 1956; Stiglitz, 1981, 1982; Bergstrom et al.,

1986; Cornes and Sandler, 1985; Andreoni, 1990; Fischbacher and Gächter, 2006; Kotchen, 2009; Ja-

cobsen et al., 2017). In the case of OSS, online collaboration dramatically reduces transaction costs

inherent to the production of other types of public goods (Coase, 1937; Nitzan and Romano, 1990).

Social norms develop around projects in order to efficiently manage the needs of the community

23See https://github.com/t9tio/open-source-jobs for a list of job listings for private firms with primary prod-
ucts centered around GitHub OSS repositories.
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and the time constraints faced by contributors (Holländer, 1990; Ostrom, 1990). Moreover, agents

are subject to contribution externalities and can confer productivity benefits on peers, which in

turn confer additional benefits to the original agent (Elliott and Golub, 2019). In this sense, agents

“pass through” benefits of increased contribution and can be compensated for these investments.

Several authors have focused on public good provision specifically within the context of OSS.

Johnson (2002) analyzes a model of OSS public good contribution. As expected, the assumption

of the fixed costs of contribution preclude the efficiency of the decentralized equilibrium. Baldwin

and Clark (2006) find that highly “modular” codebases provide contributors with option value and

ultimately attract more contribution.

3.3 Peer Effects

Productivity Spillovers

Particularly of concern to our reduced form analysis, we link this work to an expansive body of

literature concerning peer effects and their estimation. Experimental evidence suggest peer effects in

public goods settings can be driven by punishment (Fehr and Gächter, 2000), cooperation (Falk and

Ichino, 2006), and can ultimately increase voluntary contribution to public projects (Archambault

et al., 2016). Several empirical studies find evidence of labor productivity “spillovers” when high

ability peers are introduced (Mas and Moretti, 2009; Lindquist et al., 2015). There is mixed evidence

for peer effect heterogeneity across individuals (Arcidiacono and Nicholson, 2005; Cornelissen et al.,

2017), suggesting the context and estimation strategy matter. A related literature investigates the

importance of group sizes on treatment and peer effects (Angrist and Lavy, 1999; Krueger, 2003).

Identification

Identification of peer effects in non-experimental settings is of great concern to this literature.

Manski (1993) posits a “reflection problem” which Bramoullé et al. (2009) suggest can be solved

by using instruments generated by the network structure itself: the behavior of indirectly linked

agents can generate quasi-random variation needed to address endogenity concerns with estimating

peer effects in observational data. It should be noted that the identification strategy of Bramoullé

et al. (2009) relies purely on characteristics of the network structure between agents and without

9



qualification, can be devoid of microeconomic foundations or even lack appealing quasi-random

variation for causal identification (Angrist, 2014). Other authors have used alternative strategies,

such as true random assignment of peers (Sacerdote, 2001; Guryan et al., 2009; Carrell et al., 2011),

exploiting quasi-experimental designs (Dahl et al., 2014), overlapping peer groups (De Giorgi et

al., 2010), directly modelling endogenous peer networks (Goldsmith-Pinkham and Imbens, 2013),

the use of panel data (Patnam, 2011), and explicit structural approaches (Ciliberto et al., 2016).

Our study will draw several techniques from this literature to develop an identification strategy

for peer effects, including social connections, changes in peer groups, and individual fixed effects

to develop a unique, micro-founded “peers-of-peers” identification strategy in Section ??. To the

best of our knowledge, the closest use of the peers-of-peers identification strategy in public good

contribution is Slivko (2014), who uses the number and average contribution level of indirect peers

to instrument for peer contribution.

4 Data

We use observational data to measure individual contribution levels over time for a sample of OSS

projects. We draw this sample from projects hosted on GitHub, the world’s largest collaborative

software development platform.24 For each project, we observe agent-level contribution efforts in

continuous time25, measured in “commits”, or atomistic modifications to the codebases of OSS

projects.26 For the purposes of this study, we will define an agent’s peer group in a given project

as the set of other developers contributing code to that project. Individual and peer contribution

levels across projects and time will form the core of the reduced form and structural analysis.

Additional details on the data used in this paper can be found in Section ?? of the appendix.

We begin by describing the dataset in broad strokes. Since the universe of OSS repositories on

the GitHub platform is incredibly vast27, we restrict our empirical sample to a randomly selected

24Launched on April 2008, GitHub has become the world’s largest source code host and de facto collaboration
platform for OSS projects

25Each commit to a project is recorded with a timestamp (e.g. 2009-10-31 01:48:52).
26Note that a commit can encompass changes to any number of lines across any number of files. A natural concern

may be that variation in the size of individual commits makes it difficult to compare as equivalent units of contribution
effort. For example, a single commit might be a simple typo correction requiring little effort or a complicated “bug”
fix that took many hours to address. Some have argued for simpler measures to estimate labor commitment to
software development, such as the number of days a developer makes at least one contribution to a project in a given
time period (Sherwood, 2015).

27As of January 2020, GitHub has over 40 million users and hosts more than 190 million software repositories

10



subset of popular and highly collaborative projects. Specifically, we take a 10% random sample of

GitHub projects with 15 or more distinct contributors and 100 or more “stars”28 as of June 2019.

This results in an empirical sample containing 2,287 projects and 107,921 distinct contributors

observed from the launch of GitHub in April 2008 through June 2019.29 We aggregate individual

contribution to a monthly frequency and therefore the unit of analysis is individual-project-time.30

The most commonly represented programming languages for these projects are JavaScript (31%),

Python (11%), and Java (9%). Of the contributors represented in the sample, 3.7% are members

of the projects they contribute to and only 0.57% are project owners.31 The average project in

the empirical sample is 5 years old and is the product of 2,490 cumulative commits made by 56

distinct contributors. The average individual in the sample contributes 13 commits to a particular

project a month and 53 commits across all projects over the sample period. It is critical to note

the (right) skewness of contribution, both between and within projects: the median project has

829 cumulative commits made by 29 distinct contributors while the median agent makes only 3

commits to a single project each month. Furthermore, the share of individual contribution within

projects is bimodal (see Figure 4). Roughly 45% of contributions in our sample are made by

agents who represent 5% or less of total project contribution for that month. On the other end

of the spectrum, about 8% of observations in the sample represent individual contributions that

account for over 95% of total project commits for that month. In simpler terms, the most common

contribution pattern within projects involves many individuals contributing a small share32 relative

(GitHub, Inc., 2020).
28On the GitHub platform, users can mark interesting projects by “starring” them, which subscribes the user to

a newsfeed covering project development. For the purposes of this study, we use project stars as a proxy for user
interest or quality of the project. Stars also distinguish highly collaborative, “engineered” software projects from
small, single-user projects (e.g., abandoned forks or repositories containing personal files like notes or school projects)
(Munaiah et al., 2017).

29Since GitHub is simply the web platform hosting the project, some projects in the sample have contributions
made either prior to the existence of GitHub or it’s arrival on the GitHub platform. Projects are managed using
version control systems (VCS) that record a complete history of changes in the project since its inception. GitHub’s
namesake comes from the VCS tool used by the projects it hosts: git. Figure 3 overlays histograms for (1) the
earliest recorded commit in each project and (2) the date the project was created or moved to the GitHub platform.

30In other words, each observation is the level of contribution by an individual to a particular project for the given
month.

31For the projects in this sample, “ownership” does not imply property rights over the software code itself. Project
“ownership” and membership on the GitHub platform simply means the user has certain administrative privileges
within the repository, most important of which is the ability to merge proposed contributions of outsiders into the
main project codebase. It should be noted that many projects may feature core contributors with a considerable
amount of influence on project design decisions who are not officially project owners or members in the GitHub
system.

32This is known as “drive-by” or “casual” contribution (Fogel, 2005; Eghbal, 2020).
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to a dominant core contributor in each period. The sample provides evidence that even though

both aggregate contribution and the number of distinct contributors have grown over time (see

Figure 5 and Figure 6), average individual contribution levels have remained quite stable (see

Figure 7). Consistent with anecdotal evidence from the OSS literature (Eghbal, 2020) and theory

on contributor behavior (Athey and Ellison, 2014), these characteristics suggest the growth of an

OSS projects is a combination of (1) small number of dominant core contributors and (2) the

aggregate effect of small contributions from a wider population of software developers.

With a general understanding of the GitHub contribution sample used in this chapter, we now

direct attention towards measures of peer and individual contribution germane to both reduced

form and structural analysis. We present key descriptive statistics for this empirical sample of

contributions measures in Table 1. The average agent contributes 13 commits to a project each

month and has an average of 17 peers contributing 188 commits in aggregate. As noted before,

individual contribution is highly right-skewed. The median agent contributes just 3 commits per

month and has 7 peers who contribute 59 total commits. Approximately 6.8% of observations

in the empirical sample involve a sole contributor with no peers in that time period. Since the

mean and median individual contribution levels coincide with project-specific contribution, these

data suggest that most agents contribute to a single project in a month.33 The average agent’s

mean cumulative contribution to a particular project is 256 commits (median 23), a pattern that

naturally is similar in peers. Together, insights from the empirical sample suggest agents form

affinities with a particular project and continue to contribute to it over time.34

Finally, we collect two additional measures most relevant for our structural approach described

in Section ??. First, for each project and time period, we measure the number of “stars” associated

with the project. This is a rough proxy for an OSS repository’s popularity and is used to measure

the level of public good quality. Similar to contribution levels, project quality is highly skewed: the

33It should be noted that the apparent lack of contributors contributing to multiple projects may simply be an
artifact of sample construction. We simply take a random sample of projects and observe contribution activity of
agents within those particular projects. Therefore, individuals in the sample may be contributing to other OSS
projects not recorded in the present sample. We at least partially account for this deficiency when constructing our
instrument for peer contribution in Section 5.2, a measure that sums contribution levels of “peers-of-peers” across
all projects recorded in the GHTorrent sample of Gousios (2013), some of which are not contained in our empirical
sample.

34This may be explained by many alternative mechanisms, including individual need (Bergstrom et al., 1986; Lerner
and Tirole, 2002; Lakhani and Wolf, 2003), the discipline of social norms (Ostrom, 1990), or an accumulated expertise
within a project.
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mean (median) project has 910 (161) stars in a given month. Second, we observe individual time

allocated on the platform. Specifically, for each individual and time period, we measure how many

days they spend contributing to any project on the GitHub platform (Sherwood, 2015). We use

this measure of time allocation to proxy for numéraire good consumption, which in turn facilitates

the estimation of time and project-varying productivity shocks for each agent. In a given month,

the average (median) agent makes commits over 3.88 (2) days to projects in the sample. Compared

with the skewness in contribution levels, this descriptive suggests a stark difference between the

extensive and intensive margin contribution decisions.

5 Reduced Form

Before developing a structural model, we build intuition for net peer effects in public goods contri-

bution using a simple reduced form framework. We seek to understand how an individual agent’s

individual contribution level is influenced by the contribution level of her peers. This section is

organized as follows. We first outline a baseline econometric specification to assess peer effects in

public good contribution. Next, in an effort to address endogeneity concerns and give a causal in-

terpretation to the peer effect estimates, we propose an instrumental variable for peer contribution,

define its measurement, and discuss various possible threats to identification. The final subsection

discusses the empirical results.

5.1 Peer Effects on Individual Contribution

Consider a setting in which individuals i ∈ N contribute to OSS projects p ∈ P in each period

t ∈ T . The outcome of interest, aipt ≥ 0, is the contribution level for agent i to project p at

time t. The aggregate contribution level of agent i’s peers to project p at time t, denoted by

a-ipt ≡
∑

j ̸=i ajpt, is the regressor of interest. We present a baseline specification35 for contribution

peer effects in Equation (1):

aipt = δa-ipt + β′Xipt + ϵipt. (1)

35Alternative specifications similar to Equation 1 are presented in Section 5.4, serving to both provide robustness
checks and to consider different characterizations of peer influence.
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Here the vector Xipt is a set of observable exogenous factors driving agent i’s level of contribution

to project p at time t. The term ϵipt represents unobservable factors driving contribution.

The coefficient of interest in Equation (1) is δ, which captures the (average) effect of aggregate

peer contribution on the level of individual contribution.36 We will refer to the coefficient δ as the

reduced form peer effect in contribution. This term is sometimes referred to in the literature as

the “endogenous effect” (Manski, 1993) or “social multiplier” (Glaeser et al., 2003). Our empirical

analysis seeks to test the null hypothesis of no peer effects (δ = 0) against an alternative that there

exists some relationship between contribution levels of peers (δ ̸= 0). If there is evidence of peer

effects, we are also interested in the net effect of the opposing externalities. The core premise of

this study is that peer influence is the net effect of two distinct externalities in contribution. In

the canonical public goods model, individual and peer contribution to public goods are strategic

(gross) substitutes and therefore voluntary provision is vulnerable to free-riding. If incentives to

free-ride dominate, we should expect δ < 037 in equilibrium. On the other hand, if an increased

level of peer contributions also leads to an increase in agent i’s contribution ceteris paribus, it is

likely the case that some other peer effect (e.g., externalities in productivity and contribution costs,

pro-social behavior) dominates incentives to free-ride. This would imply δ > 0.

Other observable factors that influence agent contribution are captured in a vector Xipt and

may potentially vary across agents, OSS projects, and time. Examples of these influences may

include individual and peer contribution history38, observable quality or popularity of the OSS

project, the size of the contribution peer group, technical characteristics of the projects39, and

other agent characteristics.404142 In terms of the specification in Equation (1), we can also include

36In other words, the effect on individual contribution when peer contributions increase by 1 commit, on average
and ceteris paribus.

37Note that this assumes that β ̸= 0 in the true model for individual contribution. If the population model in
Equation (1) is such that β = 0 (i.e., a model without covariates or an intercept), then δ ∈ [0, 1] by construction. As
δ → 0, a single contributor dominates and all others free-ride. As δ → 1, contribution is uniform across peers.

38Such as an agent’s cumulative contribution to a project at time t or their contribution in previous periods.
Cumulative and temporal lags of contribution can capture an agent’s accumulated experience or affinity with a
particular project.

39Such as project age and programming language used
40In the context of GitHub data available, agent characteristics may include whether the agent is the owner or

member of the project or if they identify with a particular employer.
41Agents can voluntarily include the name of their employer in their GitHub profile and can make contributions

with a company email address.
42On the GitHub platform, an agent can be added as a member to a project, potentially giving them more discretion

over what proposed changes by the wider community are integrated. It also is plausibly a signal of an agent’s affinity
with a particular project.
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a battery of individual, project, or time fixed effects43 in Xipt.

5.2 Identification

The specification in Equation (1) describes a model in which peer groups are defined as the set of

agents contributing to a particular OSS project at a given point in time: individual contribution is

a function of contemporaneous, aggregate peer contribution. The specification is a simplified linear-

in-sums44 formulation similar to reduced form models studied widely in the peer effects literature

(Manski, 1993; Bramoullé et al., 2009; Goldsmith-Pinkham and Imbens, 2013).

Point identification of the parameter δ in Equation (1) is demonstrated by Lee (2007) by

exploiting “leave out” sums and variation in peer group sizes, overcoming the well known non-

identification result of Manski (1993). In our setting, we point to the descriptive statistics in

Table 1 as evidence that contributors are likely to have different groups of contributing peers in

each period for any particular project. Since peer groups in the current empirical setting are

naturally quite dynamic, we argue that point identification is established. Therefore, we wish to

go one step further and establish causal identification for the parameter δ in Equation (1). Under

what conditions can we interpret an estimate of δ as the local average treatment effect (LATE) of

peer contribution on the level of individual contribution? The immediate challenge is that since

individual and peer contribution are both observed choice variables, a naive estimate of δ likely

suffers from endogeneity bias (Angrist, 2014; Lewbel, 2019). An experimental ideal to causally

identify the net peer effects parameter δ would involve first randomly assigning agents to projects

and then allowing them to decide contribution levels, ensuring random peer groups in which choice

of contribution levels ought to be uncorrelated unobservables, or Cov(a-ipt, ϵipt) = 0. In reality,

agents select into and choose contribution levels on the basis of potentially unobservable influences,

such as personal need, technical ability, and their endowment of time to work on OSS projects. For

example, high ability agents might select into and make above-average contributions to common

projects, generating positive bias in the ordinary least squares estimate of δ in Equation (1) (i.e.,

Cov(a-ipt, ϵipt) > 0). On the other hand, low ability agents may also select into projects with highly

skilled developers and make minimal contributions. Taken to the extreme, agents who free-ride

43Inclusion of individual level fixed effects Xipt accounts for an agent’s intrinsic proclivity to contribute to OSS
goods, independent of other factors (Andreoni, 1990).

44Technically, the specification is linear in “leave out” sums by definition of a-ipt.
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completely do not contribute at all and therefore do not appear in the sample whatsoever. Since

we cannot completely account for all free-riders in OSS45, we must acknowledge any interpretation

of the estimated effects in this analysis is to be conditional on the population individuals who

contribute at all.

In the absence of purely random assignment of contributors to projects, we address the concern

over endogeneity in peer contribution a-ipt by use of an instrumental variables strategy. We seek a

valid instrument for peer contribution that, conditional on other observable and exogenous factors

Xipt, (1) exerts some influence on the contribution levels of Agent i’s peers j ̸= i and (2) only

influences Agent i’s contribution to project p through its effect on peer contribution a-ipt.
46 In

other words, in lieu of random assignment to projects, we must opt for an instrument that generates

quasi-random variation in peer contribution levels, conditional on the set of agents that contribute

at all to a given project. Furthermore, we combine this instrumental variables approach with a

battery of both control variables that plausibly explain OSS contribution and fixed effects at the

individual, project, and time period to account for common but unobservable shocks across each

unit.47

Contribution by peers-of-peers

Consider an agent i who contributes to OSS project p. If for some reason i’s peers suddenly find

contribution to other projects relatively more (less) attractive, they may allocate efforts away from

(towards) project p through a channel with no direct influence over Agent i’s contribution to p.

This strategy is facilitated by the project-mediated “social network” of individual developers in

which connections are defined by the projects they commonly contribute to.48 Agent i has peers

j ̸= i in project p, who in turn also have peers k ̸= i, j in other projects q ̸= p they also contribute

to. Hence, we argue we can use the contribution network structure itself in a “peers-of-peers”

identification strategy in the spirit of Bramoullé et al. (2009) to recover the effect of peer effort

45Given its wide-reaching prevalence, it’s difficult to imagine there exist consumers of information technology who
have not used OSS at some point.

46In the language of instrumental variable estimation, an instrument that satisfies both the (1) relevance and (2)
exclusion conditions.

47In the context of our notation, across each i, p, and t.
48In a similar effort, Fershtman and Gandal (2011) use a bipartite graph to model connections between OSS projects

and contributors.
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levels on equilibrium contribution levels.49 An important departure is that while the strategy of

Bramoullé et al. (2009) is designed to exploit general characteristics of the peer social network,

the identification used in this study is based on microeconomic principles of substitution. We

Figure 1: Identification Strategy (“Peers-of-peers” Contribution). Agents {i, j, k} contribute to
Projects {p, q}. Assume i and j contribute to p while j and k contribute to q.
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sketch out the identification strategy graphically in Figure 1. To guide the graphical intuition,

consider the following hypothetical scenario. Suppose there are three contributors N = {i, j, k}

and two OSS projects P = {p, q}. Assume that at the beginning of period t, contribution profiles are

aipt, ajpt, ajqt, akqt > 0. Hence, Agents i and j contribute positive amounts to Project p while Agents

j and k contribute positive amounts to Project q. Agent i’s direct peer is Agent j and indirect or

“peer-of-peer” is Agent k. In this sense, Agents i and k are connected only indirectly through the

49As noted when surveying related literature, Slivko (2014) uses a similar “peers-of-peers” identification strategy
by using a network of Wikipedia editors mediated by articles commonly contributed to.
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contribution patterns of Agent j.50 This initial setting is represented in Panel (a) of Figure 1. Next,

suppose Agent k increases their contribution to Project q (e.g., Panel (b) of Figure 1). If changes in

Agent k’s contribution to project q influence the time-constrained contribution behavior of Agent

j, then Agent j may have incentives to change her contribution levels to Project p. The case in

which Agent j finds her contribution to Project p a strategic complement with Agent k’s is depicted

in Panel (c) of Figure 1. An example in the OSS setting may occur when Agent k contributes a fix

for an issue in Project q that was consuming Agent j’s contribution bandwidth. Conversely, the

case in which Agent j finds her contribution to Project p a strategic complement with Agent k’s is

depicted in Panel (d) of Figure 1. This may arise if Agent k contributes an attractive fix or feature

to Project q that encourages additional contribution from Agent j. In either case, the contribution

pattern of Agent i’s indirect peer Agent k influences Agent i only through changes in the behavior

of Agent j.

In summary, we propose the use of aggregate contribution of peers-of-peers effort to instru-

ment for peer effort. The instrument operates by inducing substitution of contribution effort across

projects, generating quasi-random variation in aggregate peer effort from the perspective of individ-

ual developers. In the following two subsections, we define the measurement of the peers-of-peers

instrument and provide a set of assumptions for its validity.

Instrument Measurement

Denote the “peers-of-peers” instrument for peer contributions a-ipt as zipt. Roughly speaking, we

choose to define zipt as the aggregate contribution of peers of i’s peers in project p at time t− 1.51

Formally we measure zipt as t:

zipt =
∑
j ̸=i

∑
q ̸=p

∑
k ̸=i,j

1{ajq,t−1 > 0}1{ajk,t−1}akq,t−1. (2)

Hence, zipt represents “aggregate contribution by i’s peers-of-peers defined by project p in month

t− 1”.52 To avoid concerns of reverse causality, we use peers-of-peers contribution in the previous

50That is to say, Agents i and k are not directly connected through the contribution networks. Any influences
Agent k’s contribution has on that of Agent i operate only through changes in Agent j’s behavior.

51We consider the contribution of peers-of-peers in the previous period to mitigate concerns over reverse causality.
52Since the sample is constructed by measuring all contribution around a set of core collaborative projects, it is

important to note that agents in the empirical sample also contribute to outside projects. Therefore, projects q ̸= p
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month t − 1 to instrument for peer contribution in month t. Since Equation (1) postulates that

agents respond to aggregate as opposed to average peer contribution, we construct the peers-of-

peers instrument similarly.

Threats to Identification

The validity and strength of the peers-of-peers instrument zipt instrument for peer contribution

a-ipt rests on several assumptions.

Assumption 5.1. No isolated contributors.

Most obviously, contributors need to have peers in order to assess the influence of peer effects.

Moreover, their peers must also have peers. While by construction of the sample each project has

at minimum 15 distinct contributors over its lifespan, we acknowledge that the empirical sample

includes a small share of observations in which only a single agent makes a contribution in that

time period.53 We should reasonably expect such observations to both weaken the relationship

between the instrument zipt and peer effort aipt and introduce downward bias to estimates of the

peer effect coefficient δ.

Assumption 5.2. For each agent i, there exists a set of projects i will never contribute to, inde-

pendent of the cost of contribution.

Agents cannot be peers with everyone. For the exclusion restriction to hold, it is necessary

that peers-of-peers contribution influences individual contribution only through peer contribution.

Hence, we need a sufficient level of contribution behavior where agents are connected indirectly

through peers.54 Consider a setting in which all agents contribute to all projects. In this setting,

agent i’s contribution level is directly influenced by other agents since the “peers of i’s peers” are

really just i’s peers.

Assumption 5.3. Conditional on observable influences, agents substitute contribution effort be-

tween projects.

and contribution levels {ajqt, akqt} may not be present in the sample.
53As noted in Section ??, these observations comprise about 6.8% of the empirical sample.
54In other words, the social network of contribution cannot be a complete graph and a sufficient number of “in-

transitive triads” exist in the contribution network (Bramoullé et al., 2009; De Giorgi et al., 2010; Graham, 2015).
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In other words, the peers-of-peers effort zipt is conditionally correlated with aggregate peer contri-

bution a-ipt for the relevance condition to hold: Cov(a-ipt, zipt | X) ̸= 0. This is our most critical

assumption. For the instrument to be relevant, there needs to exist some degree of influence of

peers-of-peers contribution on peer contribution in aggregate. The immediate concern with using

“peers-of-peers” contribution to instrument for peer effort in Equation (1) is that the objective of

reduced form analysis is to test the null hypothesis of δ = 0: no influence of peer contribution

on individual contribution within projects. However, it is important to note that the peers-of-

peers instrument operates through substitution with peer contribution between projects while the

null hypothesis for Equation (1) only accounts for substitution with peer effort within projects.

There is no reason ex ante that one substitution pattern precludes the other. Additionally, we

argue that the peers-of-peers contribution levels are relevant conditional on other exogenous or

predetermined factors drive peer contribution, such as cumulative contribution in a project (i.e.

Cov(a-ipt, zipt | Xipt) ̸= 0).55 Combining these arguments, we assert that if these assumptions hold

then the peers-of-peers instrument zipt drives some degree of meaningful variation in peer contri-

bution a-ipt that is quasi-random and therefore exogenous from the perspective of the individual

i.

5.3 Results

We present baseline estimates for the peer effects parameter δ of the reduced form model from

Equation (1) in Table 2. Columns (1) through (3) of Table 2 present ordinary least squares (OLS)

estimates while Columns (4) through (6) present instrumental variables estimates using two-stage

least squares (IV 2SLS). We use peers-of-peers contribution zipt to instrument for peer effort a-ipt.

Columns (1) and (4) estimate a specification of Equation (1) with only an intercept and the en-

dogenous regressor a-ipt. Columns (2) and (5) add covariate controls56 and Columns (3) and (6)

add covariate controls alongside project and year-month fixed effects.

The estimates in Table 2 suggest little evidence of peer effects in contribution on average for

the full sample. The OLS estimates in Column (3) are not statistically different from zero after

55Furthermore, we note there is some degree of mechanical correlation between a-ipt and zipt: a greater number of
peers to individual i is likely to subsequently generate a greater number of peers-of-peers.

56Control variables include three temporal lags of individual and peer commits to the project, cumulative individual
and peers project commits, project quality measured in GitHub stars, quadratic terms for project age, and dummy
variables indicating if the individual is a project owner, project member, or if they are affiliated with a firm.
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accounting for project fixed effects and observables. The same is true for the corresponding 2SLS

estimates. These specifications explain roughly 18% of the variation in individual contribution for

the full sample. We note the F statistic from the first stage of the 2SLS estimate in Column (6)

of Table 2 is 64.37.57 Hence, given the model in Equation (1) and the sample at hand, we cannot

reject the null hypothesis of no peer influence on individual contribution on average (δ = 0) once

we account for project fixed effects and covariate controls.

5.4 Detailed Analysis and Robustness

Estimates for the population average δ in Equation (1) mask considerable heterogeneity in peer

influence on individual level contribution. To explore heterogeneity and provide additional robust-

ness for the reduced form peer effect estimates, we estimate a series of alternative specifications

and present the results in Appendix ??. Most notably, we find evidence that although the number

of contributors has grown over time, contemporaneous peer effects have diminished over time (see

Figure 9). It’s reasonable to suspect that peer effects are stronger in the earlier days of GitHub as

most projects in the sample were still in their infancy. Peer groups were smaller and there were sim-

ply fewer developers active on the platform. We also find considerable heterogeneity in peer effects

at the project level (see Figure 8). We interpret this result as heterogeneity in net complementarity

of contribution effort that likely varies across projects.58 Moving beyond contemporaneous peer

effects, we find that peer effects are stronger when regressing individual contribution 3 months after

on peer contribution 3 months preceding a given period t (see Table 5). It is likely the case that

peer influence takes some time to operate and individuals are induced to contribute on the basis

of relatively recent development activity, not necessarily occurring in the same month. This result

is important as it suggests that intensive margin peer effects are likely stronger after relaxing our

rather restrictive assumption of contemporaneous influence.59 Finally, we consider the effect of con-

57Since the model is just-identified, we report the heteroskedasticity-robust F statistic proposed by Olea and
Pflueger (2013) and recommended by Andrews et al. (2019).

58Moreover, our data and econometric specification treat each individual commit as equivalent contribution. In
reality, some contributions might be more important than others. Consider the difference between a typo fix and
the introduction of a new feature set. Since the specific lines of code changed by each commit can be observed, a
worthwhile continuation of this work ought to examine the interaction between specific types of contribution and
peer influence. This approach can give context to the heterogeneity observed in peer effect estimates and guide
recommendations for OSS sustainability policy.

59We return to this assumption when interpreting our structural estimates of intensive margin peer effects in
Section 6.5.
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tribution by project “insiders” on the level of contribution by project “outsiders” (see Figure 10),

and find evidence that increased contribution from project insiders “crowds out” contribution from

outsiders.

Our results together suggest that while contemporaneous intensive margin peer effects in con-

tribution are limited on average for the entire sample, (1) there exists significant heterogeneity in

peer effects across time and projects, (2) contemporaneous peer effects may too narrowly restrict

the scope of peer influence, and (3) free-ridership is likely prevalent if dominant core contributors

and project insiders carry out the bulk of OSS development. We discuss these results in more detail

alongside the findings of the structural analysis in Section ??.

6 Structural Model

While the reduced form analysis begins to reveal patterns of peer influence in OSS contribution, a

more refined approach is needed to operationalize the various channels through which peer contribu-

tion can influence equilibrium behavior. Importantly, the reduced form specification in Equation (1)

conflates peer influence along both the extensive and intensive margin into a single parameter.

Therefore, estimates of contribution peer effects δ are conditional on agents who contribute pos-

itive amounts and does not separately account for why agents decide to contribute to particular

projects. A structural approach allows us to rigorously define micro-founded channels for both

equilibrium contribution decisions and peer influence.

There are several key features of our structural model. First, we seek to separately identify

marginal private benefits and costs of contribution for each agent. Second, we can characterize each

agent’s equilibrium contribution decision along both the extensive (i.e., whether to contribute) and

intensive (i.e., how much to contribute) margins. Third, we can integrate peer influence into both of

these features. Peer effects can potentially influence contribution benefits and productivity as well

as intensive and extensive margin contribution in equilibrium. Finally, a fully specified structural

approach permits counterfactual analysis. This will allow us to place a value-added estimate for

both intensive and extensive margin peer effects in terms of changes to equilibrium contribution.

Specifically, we can compare contribution from the observed equilibrium to a counterfactual under
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which peer effects are absent.60

The remainder of this section is organized as follows. First, we set up the model of OSS

contribution and introduce its various elements in Section 6.1. Our approach combines a model of

private provision of public goods (Bergstrom et al., 1986) into a selection model (Heckman, 1979).

Second, we define an equilibrium in Section 6.2. Third, in Section 6.3 we specify how peer effects

enter into the structural framework. Fourth, we detail our estimation strategy in Section 6.4. Fifth,

we describe the structural estimates in Section 6.5. Finally, we conduct a counterfactual analysis

to estimate “value-added” by peer effects in Section 6.6.

6.1 Setup

Individual agents (i.e., OSS developers) are indexed i ∈ N = {1, . . . , N}. In each period t ∈

T = {1, . . . , T}, agents choose contribution levels aipt ≥ 0 across a set of OSS projects indexed

p ∈ P = {1, . . . , P} to maximize incremental contribution utility in each period. To summarize

what follows, Table 8 collects notation for the structural model.

Project Quality

Projects are indexed by their quality ypt at time t. We assume project quality ypt is a simple linear

function y of cumulative contribution through t, apt ≡ {aips}i∈Ns≤t , and parameters bpt:

ypt = y(apt, bpt) = bpt
∑
i∈N

∑
s≤t

aips. (3)

Note that this specification implies that the parameter bpt represents the marginal product of

contribution labor in terms of the quality of project p at time t.61

Preferences

Agent preferences are styled after Bergstrom et al. (1986)’s model of private public good provision.

We extend this framework to include multiple public goods and time periods. In each period t and

60Or, as if software developers contributed to projects in isolation from one another. We operationalize this by
setting intensive or extensive margin peer effects equal to zero.

61While the project quality specification in Equation 3 may give rise to concerns over “over-fitting” parameter
estimates to the data, we choose this specification purposefully to capture the reality that the marginal product of
contribution labor is arguably higher when the project is in early development stages.
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for each project p, agents derive utility over (1) direct contribution benefits, (2) project quality,

and (3) a numéraire consumption good xit (e.g., time). Specifically,

uit = u(ait, yt, xit) =
∑
p∈P

(
viptaipt −

1

2
(aipt)

2 + ypt

)
+ xit, (4)

where ait ≡ {aipt}p∈P and yt ≡ {ypt}p∈P respectively collect agent i’s contributions and project

quality across for all p ∈ P at time t. Following Bergstrom et al. (1986), we assume linear prefer-

ences: contribution, public good quality, and private good consumption are perfect substitutes.62

This simplifies the utility maximization problem into independent choices of optimal contribution

between projects, subject only to a budget constraint. Agent preferences are shaped by private

contribution benefit shocks vipt ∈ R, which partially determine the optimal level of contribution in

equilibrium. It’s critical to note that a realization of vipt may be such that the agent decides not

to contribute to project p at all. Individual project-specific benefit shocks are similar to Athey and

Ellison (2014)’s “arrival of needs” model of OSS dynamics at a macro-level.

Contribution Constraint

We assume that agent contribution aipt and consumption of the private good xit are constrained

by (1) productivity shocks63 cipt > 0 and (2) endowments ωit:

xit +
∑
p∈P

ciptaipt ≤ ωit. (5)

In our empirical application, ωit is the agent’s endowment of time in period t (i.e. 1 month) and the

private good xit is the amount of time spent not contributing.64 As in the reduced form analysis,

we measure aipt as the number of commits agent i makes to project p at time t. This implies that

the (inverse) productivity parameters cipt measure the time cost incurred by agent i making aipt

commits to project p.65 If cipt > cjpt, agent j is more productive contributing to project p at time

62More specifically, preferences are quasilinear in xit and therefore increasing an agent’s endowment of the numéraire
good does not influence demand for contribution.

63As specified in the contribution constraint in Equation (5), cipt technically represents agent i’s “cost” of contri-
bution to project p at time t. The inverse of cipt is therefore a measure of contribution productivity. Throughout the
structural analysis, we will refer to cipt as both “productivity” and “cost” interchangeably.

64In other words, the number of days in month t in which agent i authored no commits.
65When an agent’s endowment ωit is measured as the number of days in period t and xit is measured as the number

of days in the period i was not active on the GitHub platform, the shock cipt can be interpreted as the number of

24



t. Finally, we naturally normalize ωit = 1 for all i and t given its interpretation. Since aipt ≥ 0,

this will in turn imply 0 ≤ xit < 1 and 0 < cipt < 1.66

Selection Mechanism

Obviously, agents can elect to contribute nothing to certain projects. We therefore introduce a

selection mechanism in the spirit of Heckman (1979). We assume that projects feature fixed costs

of contribution, modelled as a latent productivity threshold zp.
6768 Agent i will contribute a⋆ipt > 0

to project p at time t if their private project-specific ability zipt exceeds zp. Furthermore, we

assume that zipt is a linear function of observables Wipt, zipt = γ ′Wipt + ϵzipt where ϵzipt ∼ N (0, 1).

Therefore, the probability that i contributes to project p in period t is

Pr(a⋆ipt > 0) = Pr(zipt ≥ zp) = Φ(γ ′Wipt), (6)

where Φ(z) is the standard normal cumulative distribution function. In applications, we normalize

the contribution threshold zp = 0 for all projects.69 The vector Wipt contains a set of characteristics

that influences i’s decision to contribute to project p at time t: the number of peers contributing

to project p and both cumulative and lagged contribution for individual i as well as for all agents

j ̸= i (e.g., historical peer contribution). These factors give important signals to prospective

contributors deciding which projects to participate in and will serve as the basis for our extensive

margin peer effects discussed in more detail in Section 6.3. For example, an established project

featuring many active contributors can provide a useful signal to newcomers uncertain about its

quality and maturity, who may be more inclined to contribute under a belief that their efforts will

go towards a worthwhile endeavor.

commits i makes to project p per days i was active on GitHub.
66In general, we only bound productivity shocks such that cipt > 0. However, in the data the smallest value of

positive contribution is a⋆
ipt = 1. It can therefore be shown that this normalization implies also cipt < 1 for all

a⋆
ipt > 0.
67We acknowledge that this selection mechanism could also be interpreted as a latent benefit threshold. See the

discussion of structural estimates of extensive margin peer effects in Section 6.5.
68See Hsieh et al. (2018) and Hsieh et al. (2020) for examples of similar selection mechanisms used in models of

public good contribution.
69To rationalize this normalization, we detail project-specific estimation of γ for each p in Section 6.3.
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6.2 Equilibrium

Timing and Information

At the beginning of each period t, each agent first learns their extensive margin shock ϵzipt for

each project. Next, the set of agents who meet the productivity threshold zipt ≥ zp and decide to

contribute to project p learn their benefit and productivity shocks (vipt, cipt). We assume that all

shocks are public information: agents know who will contribute to which project and how much

they will contribute. In the following subsections, we characterize both extensive and intensive

margin decisions and the resulting equilibrium.

Extensive Margin Decision

Following the selection mechanism described in Equation (6), agent i will contribute a⋆ipt > 0 if

and only if zipt ≥ zp upon learning ϵzipt. Otherwise, if an agent does not cover the productivity

threshold, they will decide not to contribute to project p at all: zipt < zp ⇐⇒ a⋆ipt = 0.

Intensive Margin Decision

Agents with zipt ≥ zp next determine an optimal, positive contribution level a⋆ipt > 0. Taking

marginal private benefit and productivity shocks (vipt, cipt) as given, each agent i chooses an allo-

cation (aipt, ypt, xit) to maximize incremental utility uit:

max
aipt>0,ypt,xit∈[0,1)

∑
p∈P

(
viptaipt −

1

2
(aipt)

2 + ypt

)
+ xit

s.t. xit +
∑
p∈P

ciptaipt ≤ 1

ypt = bpt
∑
j

∑
s≤t

ajps.

(7)

Under the intensive margin decision characterized by System 7, each agent i explicitly takes into

account (1) shocks (vipt, cipt) and (2) cumulative contribution to project p. To account for affinities

and experience formed in particular projects, we allow an agent’s cumulative and lagged contribu-

tion history to influence their benefit and productivity shocks in Section 6.3.

To characterize each agent’s intensive margin contribution behavior in equilibrium, we observe
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that the first order necessary conditions for optimal, non-zero contribution a⋆ipt > 0 imply

a⋆ipt = bpt + vipt − cipt. (8)

In other words, should agent i decide to contribute to project p at time t, her optimal level of

contribution equals the sum of the marginal product of labor in terms of public good quality bpt,

the marginal private benefit of contribution vipt, and the marginal private cost of contribution cipt.

All else equal, agents contribute more when either their marginal product of labor or marginal

private benefits of contribution are higher and less when the marginal cost of contribution (i.e.,

inverse productivity) is higher.70

Combining the optimal intensive margin choice of contribution in Equation (8) and the ex-

tensive margin decision (i.e., selection mechanism) in Equation (6), a given agent i’s equilibrium

contribution strategy for project p at period t can be summarized as

a⋆ipt =


bpt + vipt − cipt if γ ′Wipt ≥ ϵzipt

0 if γ ′Wipt < ϵzipt.

(9)

6.3 Peer Effects

We allow peers to influence equilibrium contribution decisions along both the extensive and in-

tensive margins for equilibrium contribution behavior described in Equation (9). To disentangle

these margins, we will assume separate channels of influence for each mechanism. Historical peer

contribution will form the basis for peer effects along the extensive margin. Conditional on the set

of agents who contribute a strictly positive level, correlation between the realized benefit and pro-

ductivity shocks, (vipt, cipt), of an individual and her peers will form the basis for peer effects for the

intensive margin choice. We formalize these peer effect channels in the following two subsections.

Extensive Margin

To integrate peer influence into the extensive margin contribution decision, we disaggregate influ-

ences over agent i’s latent ability threshold for project p at period t, zipt = γ ′Wipt + ϵzipt, into

70Equation (8) is a linear form of the optimal public good contribution level of derived by Bergstrom et al. (1986),
reflecting that private public good contribution is driven by heterogeneity in both benefit and cost heterogeneity.
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characteristics specific to i or project p, β′
zXipt (individual controls), and those related to peers

j ̸= i, γ ′Wipt (peer influences).71 Specifically, we include (1) the number of agents contributing

to project p in period t− 1 as well as (2) cumulative and lagged peer contribution to project p in

the vector Wipt. This is designed to capture the fact that past contribution to OSS projects by

peers is a public information good itself and may lay the foundation for subsequent contribution.72

On the other hand, agents may also choose to free-ride should cumulative project contribution

reach a particular level. The vector Xipt contains measures such as individual i’s cumulative and

lagged contribution, and therefore accounts for i’s own accumulated experience with project p.

Furthermore, we allow parameter vectors γ and βz to vary by project and period. In addition to

simplifying estimation73, estimating separate parameters for each project implicitly accounts for

project-varying characteristics that may influence selection beyond contribution history.74 For each

project, the selection mechanism in Equation (6) becomes

Pr(a⋆ipt > 0) = Φ(γ ′Wipt + β′
zXipt). (10)

The parameter vector γ captures project-specific peer effects along the extensive margin as a

function of historical peer contribution activity. If γ > 0, the likelihood of contribution is increasing

in past peer contribution Wipt.
75

Intensive Margin

For each a⋆ipt > 0, we can separately recover the shocks vipt and cipt by using the equilibrium

contribution level in Equation (8), the budget constraint in Equation (5), and the project quality

function in Equation (3).76 Therefore, we can develop a framework for assessing contemporaneous

peer influence for both individual private benefits and productivity along the intensive margin,

71With a slight abuse of notation for simplicity.
72The influence of past actions by peers is also considered in a similar fashion by Bollinger and Gillingham (2012),

who use cumulative solar panel installations in a neighborhood to predict current period adoptions.
73Estimating an analogous model Pr(a⋆

ipt > 0) = Φ(γ′Wipt + β′
zXipt) with a single coefficient γ would entail a

single regression with N · P · T = 107, 250 · 2, 287 · 134 = 32, 867, 620, 500 observations at the individual level.
74This amounts to including a distinct constant term in each N -length vector Xipt for each p.
75Notice that

∂Pr(a⋆
ipt > 0)

∂Wipt
= γϕ(·) > 0

76Estimation is covered in detail in Section 6.4 as well as Section ?? of the appendix.

28



conditional on the set of agents with strictly positive contribution levels. In the context of our

model, this can be measured by the degree to which shocks (vipt, cipt) are correlated between peers

in a given project and period.

We separate peer effects in contribution productivity, cipt, from peer effects in private contri-

bution benefits, vipt, by using distinct peer effect specifications similar in structure to the reduced

form peer effects specification in Equation (1). First, we assume that agent productivity is at least

partially determined by peer effects:

cipt = δcc-ipt + β′
cXipt + ϵcipt, (11)

where c-ipt ≡ 1
npt−1

∑
j ̸=i 1{a⋆ipt > 0}cjpt and npt ≡

∑
i∈N 1{a⋆ipt > 0} define the mean of produc-

tivity shocks for i’s contemporaneous peers in project p.77 Like the extensive margin specification

in Equation (10), Xipt are a vector of observables and fixed effects such as lagged and cumulative

contribution. Conditional on covariates, δc captures the average correlation in productivity shocks

amongst peers for a given project and time period. When δc < 0, individual costs of contribution

are negatively correlated with peer costs, suggesting positive peer effects in terms of productivity.

Similarly, private benefit shocks (e.g., private “needs” or returns to contribution) are modelled

as follows:

vipt = δvv-ipt + β′
vXipt + ϵvipt. (12)

When δv > 0, individual private benefits are positively correlated with those of their peers, sug-

gesting pro-social peer effects.

To summarize, extensive margin peer effects are parameterized by γ. Conditional on the set

of agents who do contribute, intensive margin (contemporaneous) peer effects are parameterized by

(δc, δv).
78 The framework for extensive and intensive margin peer effects in this structural approach

captures several desirable properties. First, we model each margin independently, allowing us to

estimate them separately. The source of extensive margin effects is historical peer contribution

77When there is only a single agent contributing to a project, c-ipt = 0.
78In a more general sense, elements in the vectors (βv,βc) may include terms related to historical (i.e., lagged or

cumulative) peer contribution that, similar to the extensive margin parameterization, may also plausibly influence
positive contribution levels. With respect to the counterfactual analysis in Section 6.6, we are more broadly interested
in parameters related to both types of peer influence, contemporaneous and accumulated, on private benefits and
productivity.
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and the source for intensive margin effects is contemporaneous correlation with contributing peers.

Second, given that we observe each agent’s extensive margin decision for every project and period,

we can estimate γ separately for each p. Motivated in part by the considerable project-level

heterogeneity revealed in the reduced form analysis, this parameterization is more flexible than

estimating a single parameter and can account for a range of project-varying extensive margin

influences.79 Finally, we use the OSS contributor’s time-constrained utility maximization problem

to separately recover benefit and productivity shocks. Unpacking net benefits allows us to further

isolate the channels of peer influence in intensive margin contribution. In the next section, we turn

our attention to estimating parameters of interest.

6.4 Estimation

In this section, we provide a high-level overview of our structural estimation strategy and objectives.

A more thorough and detailed treatment is provided in Section ?? of the appendix. Given data

(aipt, ypt, xit) for all i ∈ N , p ∈ P, and t ∈ T , we develop an estimation strategy to recover the

following:

1. Marginal product of labor parameters b = (bpt) from the project quality function in Equa-

tion (3).

2. Private benefit and productivity shocks s = (vipt, cipt) for all a⋆ipt > 0 from the equilibrium

contribution level in Equation (8).

3. (Extensive margin peer effects) Parameters (γ,βz) from Equation (10).

4. (Intensive margin peer effects) Parameters (δc, δv,βc,βv) from Equations (11) and (12).

The parameters of interest are δ = (δc, δv), which drive intensive margin peer effects, and γ, which

drive extensive margin peer effects. For each project p ∈ P, our estimation strategy is as follows:

1. Assume disturbances are jointly normally distributed (ϵzipt, ϵ
v
ipt, ϵ

c
ipt) ∼ N (0,Σ), independent

and identically distributed between agents and time. Within the variance-covariance matrix

Σ, assume that σ2
z = 1.

2. Given data (aipt, ypt), recover bpt using Equation (3).

79Note that given data limitations, we cannot estimate intensive margin peer effects (δv, δc) separately for each
project and period. In many cases, our empirical sample contains only a single contribution for the month to a given
project.
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3. Given data (aipt, ypt, xit) and bpt, recover shocks (vipt, cipt) using Equation (9), Equation (5),

Equation (3) by way of generalized method of moments (GMM) estimation80.

4. Given data (1{aipt > 0},Wipt,Xipt) and shocks (vipt, cipt) recover (γ, δ,β,Σ), where δ =

(δv, δc) and β = (βz,βv,βc), via maximum likelihood estimation (MLE) (Zhao et al., 2020).

Parameters θ = (b,γ, δ,β,Σ) allow us to completely characterize the data generating process for

the structural model, a necessary prerequisite simulating policy counterfactuals.

6.5 Structural Estimates

Benefit and Productivity Shocks

We present the recovered values for marginal product of labor parameters bpt and shocks (vipt, cipt)

for all a⋆ipt > 0 in Figure 11. The first panel of Figure 11 contains distributions of marginal pri-

vate benefit shocks vipt grouped by year. Similarly, productivity (inverse marginal cost) shocks are

presented in the second panel. Several patterns emerge from the recovered shocks. First, these

distributions are relatively stable over time. Second, when considering the entire sample, ben-

efit and productivity shocks are relatively uncorrelated with one another at the individual level

(Corr(vipt, cipt) = −0.081). There is, however, evidence of a temporal trend in shock correlation

over the sample period: Figure 12 reveals that benefits vipt demonstrate a strong negative cor-

relation with productivity cipt (Corr(vipt, cipt) ≈ −0.6 to −0.5) in early periods of GitHub that

trend towards 0 nearer the end of the sample period. Recall that Cov(vipt, cipt) < 0 implies that

greater marginal private benefits are associated with lower private marginal costs of contribution.

Together, these data seem to suggest that early stages of GitHub OSS collaboration featured highly

productive individuals with greater net benefits of contribution relative to later entrants. In later

periods, incentives to become more productive may be weaker given greater peer participation. Cor-

roborating the findings of the reduced form analysis, this structural evidence further supports the

notion that the prevalence of free-ridership has likely increased on average as the GitHub platform

has grown in size.

The third panel of Figure 11 contains estimates of marginal product of labor parameters bpt

80For each i and t, there are 2P unknowns: vipt and cipt for each aipt > 0. There are P first order conditions from
Equation (9), P equations for project quality form Equation (3), and one budget constraint. Overall, this implies
NT (2P + 1) moment conditions and 2NPT unknowns.
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from Equation (3). By virtue of functional form assumption for project quality, bpt tend to be largest

in the early stages of project development: the initial commits tend to be the most important in

determining project quality. Since bpt tends to decline over a project’s lifespan, productivity and

benefit shocks explain sustained contribution.

Extensive Margin Peer Effects

Figure 13 contains estimates for extensive margin peer effects captured by the parameter γ of

Equation (10). Two key patterns emerge. First, the likelihood of contribution is increasing in the

number of peers who contributed in the previous period while decreasing in lagged and cumulative

contribution levels. Second, the coefficients for lagged number of peers are much larger in magnitude

compared with lagged and cumulative contribution. Taken together, these estimates underscore

an intuitive if not trivial fact: agents are more likely to join projects growing in the number of

contributors. To a lesser extent, the likelihood of contribution declines as projects grow larger in

terms of the size of the codebase. We can interpret this finding in several ways. On one hand,

actively developed projects provide positive peer effects that incentivize contribution from outsiders.

On the other, it may simply be the case that increased development activity in the early stages of

a project may signal a project’s promise or quality to prospective contributors. To rule out this

signalling mechanism, we estimate extensive margin peer effects at the project level and control

for observable project quality. Moreover, it appears that contribution incentives lessen as a project

matures into a stable state81, as it is likely that less contribution is required.

In Equation (6) of Section 6.1, we model extensive margin selection into projects as a latent

productivity threshold. We acknowledge that the largest driver of project participation, the number

of peers contributing, can influence both benefits and costs of contribution. Given that zipt is

unobserved and a function of both individual and peer historical contribution, we could just as

easily have modelled zp as a latent benefit threshold for project p. At best, we can only say

our structural approach finds evidence that projects with many actively contributing members

increase an individual’s net benefit of contribution and therefore positively impacts extensive margin

participation.

81This phase of project development is sometimes referred to as “maintenance mode” as opposed to “active devel-
opment”.
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Intensive Margin Peer Effects

Project-level estimates of the intensive margin peer effects δv and δc are summarized in Figure 14.

Much like the project-level reduced form estimates displayed in Figure 8, both benefit and produc-

tivity peer effects are distributed relatively symmetrically around 0. A relatively strong positive

correlation between δv and δc, Corr(δv, δc) = 0.843, implies greater benefit correlation between

peers within projects is also associated with greater marginal cost correlation between peers. Ulti-

mately, this suggests an inverse relation between benefit and productivity shocks correlation: the

net effect of peer influence along the intensive margin leads developers to contribute more at greater

marginal cost. The lack of correlation between vipt and cipt at the individual level further supports

this finding. We interpret this positive correlation between δv and δc as evidence that pro-social

peer effects dominate productivity peer effects. Consistent with the reduced form analysis, there is

no strong evidence that contemporaneous peer effects improve intensive margin productivity across

projects on average. In other words, we cannot say that OSS contributors make each other more

productive along the intensive margin when considering contemporaneous influence.

Summary

To summarize, structural estimation of benefit and cost shocks along with extensive and intensive

margin peer effects seem to corroborate evidence from our reduced form approach and descriptive

statistics from the empirical sample. First, extensive margin peer effects are a much more im-

portant driver of project growth relative to intensive margin effects. Consistent with the “casual

contributor” phenomenon described anecdotally by OSS maintainers, projects with many contrib-

utors are more likely to attract incremental contributions from outsiders than they are to attract

dedicated maintainers. Second, in terms of the ratio of private contribution benefits to costs, early

OSS contributors on the GitHub platform enjoyed greater net benefits of contribution relative to

later entrants. Finally, pro-social forces seem to trump peer effects with respect to intensive margin

productivity. There is little evidence to suggest peers reduce marginal costs of contribution along

the intensive margin.

It is important to note that these results and their subsequent interpretation rest on some

assumptions made in our modelling approach. First, as in the reduced form analysis, we place
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a restrictive assumption that intensive margin peer influence operates contemporaneously. As

shown in Section 5.4, relaxing this assumption will likely lead to larger estimates of peer effects

along this margin. Second, the functional form assumptions made in our structural approach may

simplify estimation at the expense of some flexibility. Specifically, Equations (3) (project quality)

and (4) (agent preferences) omit certain terms such that benefit and productivity shocks can be

point identified. These assumptions may bias our parameter estimates away from their true values.

Subsequent work would do well to relax these assumptions by either additional structure, data, or

a more flexible estimation strategy.

6.6 Counterfactual Analysis

Value of Peer Effects

While the presence of positive82 peer effects precludes a socially optimal level of contribution under

private provision, they may increase equilibrium contribution beyond what would be provided

in a world without peer influence. In this sense, peer effects have the potential to effectively

subsidize the cost of private provision. Indeed, the preliminary analysis of the structural estimates

in the preceding subsection gives reason to believe that peer behavior can drive preference and cost

heterogeneity along both the extensive and intensive margins, albeit to differing degrees. To gauge

the “value-added” by highly nuanced peer effects in terms of aggregate contribution labor, we use

the estimates of the structural model to derive a counterfactual equilibrium in which peer effects

are absent.

We consider the following policy counterfactual: suppose peer effects do not exist. In other

words, past peer contribution does not influence an individual’s likelihood of contribution and

private benefit and productivity shocks are uncorrelated for individuals who decide to contribute.

This scenario roughly corresponds to “siloed” development: agents independently contribute to a

public good but do so without interaction with peers or the contribution levels of peers. What is the

resulting level of contribution? Specifically, we begin by setting extensive and intensive margin peer

effect parameters to zero: γ = δ = 0. We then use the remaining parameter estimates (β,Σ, bpt)

82Note that in the canonical public goods model of Samuelson (1954), negative peer effects (e.g., a congestion
externality) could potentially offset the classic positive externality that drives free-riding and under-contribution
relative to the social optimum.
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to re-simulate the data generating process described by the structural model for the entire sample

period.83 To compare the relative impact of extensive and intensive margin effects, we also simulate

a counterfactual under which extensive margin peer effects exist while only intensive margin peer

effects are absent.

The results of these counterfactuals, in terms of aggregate contribution across all projects,

are summarized alongside the observed data in Figure 15. Two key patterns emerge. First, the

counterfactual without peer effects results in aggregate contribution approximately 55.6% lower

compared with the observed equilibrium. By June 2019, aggregate contribution across all projects

in the observed sample totals in excess of 5.519 million commits. Under the counterfactual scenario

with no peer effects, aggregate contribution is reduced to approximately 2.452 million commits. If

contributors make 2–3 commits per labor hour on average, a back-of-the-envelope calculation for

this shortfall of 3.067 million commits implies a loss of 1–1.5 million OSS labor hours relative to

the observed equilibrium. The median hourly wage of $52.95 for software developers in the U.S.

suggests the value-added by OSS peer effects in our sample at $54.132 to $81.199 million USD.

Second, extensive margin peer effects constitute the overwhelming of the value added. Figure 15

shows that the counterfactual scenario in which only extensive margin peer effects exist (i.e., δ = 0)

closely matches the observed equilibrium under which both extensive and intensive margin effects

are active. As discussed in Sections 5.4 and 6.5, the diminished role of intensive margin effects may

be a result of our narrowly tailored definition for peer influence.

7 Discussion

Using the context of OSS, we have studied the influence of peer effects on the private provision

of public goods in detail. We use both reduced form and structural approaches to (1) address

non-random selection, (2) distinctly model intensive and extensive margin peer effects, and (3)

disentangle marginal private benefits and costs of contribution as distinct channels of influence.

Our findings in both approaches are consistent with anecdotal evidence: OSS project growth is

largely driven by some combination of dedicated large-share core contributors and the arrival of

many small-share contributors. We find little evidence that peers make each other more productive

83We use data (aipt, ypt, xit) and recovered shocks (vipt, cipt) to “seed” initial conditions for period t = 2008–04–01.
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on average: contemporaneous intensive margin peer effects are heterogeneous across projects but

do appear to have been larger in the early days of GitHub. Moreover, structural estimates suggest

the effect of peer influence on average is that agents contribute greater levels when their peers do,

but at greater marginal cost. Our counterfactual analysis seeks to estimate the value-added of peer

effects in terms of private public good provision. Driven almost exclusively by extensive margin

peer effects, we find that cumulative contribution is approximately 56% lower under the scenario

where peer effects are not present.

We can interpret the findings of this analysis to highlight some limitations for the potential

for peer effects to foster the production of public information goods. We find that while extensive

margin effects can drive a significant share of contribution, these effects are decreasing in the size

of the peer group. This may arise either (1) if small share contributors free-ride on the efforts

of dominant core contributors or (2) become less likely to contribute once a project matures in

size. Moreover, the lack of strong, positive peer influence in contribution productivity along the

intensive margin suggests that any strategic complementarity or substitution in contribution may

simply offset on net. Compared with previous studies which document strong pro-social effects

to collaboratively produced public goods (Zhang and Zhu, 2011; Slivko, 2014), peer effects in the

production of more complex information goods like OSS may be significantly more nuanced.

As noted above, a key takeaway of this study is that agents differ in their willingness to con-

tribute their labor towards the sustained maintenance of OSS used by a larger community. The

extent to which peer effects matter for sustaining the quality of OSS public goods likely depends

on both (1) the project’s use valuation from the wider community and (2) the project’s position

as a component of OSS infrastructure (Eghbal, 2016).84 Whereas the study of peer effects in this

chapter focuses purely on the production side of public goods, a promising direction for future

research is to explore the welfare implications for behavioral patterns uncovered thus far.85 Better

characterizations of optimal contribution patterns that consider the wider set of beneficiaries to

84For example, if OSS production fits a combinatoric production model in which developers make small, specialized
contributions and move on to other projects, peer effects may be of less importance to delivering an efficient equilib-
rium. On the other hand, network externalities might amplify the importance of maintenance labor and positive peer
effects. Consider the example of OpenSSL and the Heartbleed Bug. OSS infrastructure that is widely depended upon
but maintained by a small group could likely benefit from additional contribution labor that can at least partially be
generated through peer effects.

85In other words, subsequent studies would do well to distinguish between the welfare implications of production
versus sustained maintenance for complex public information goods like OSS.
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OSS quality allow the researcher to better discern the extent to which peer influences on collab-

oration truly matter. Such efforts can continue to place the economic significance of peer effects,

externalities, and public good production into context for OSS.
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Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin, “Identification of peer effects
through social networks,” Journal of econometrics, 2009, 150 (1), 41–55.

Brown, C. Titus, “A framework for thinking about Open Source Sustainability?,” 7 2018. Ac-
cessed: 2021–12–04.

Carrell, Scott E, Bruce I Sacerdote, and James E West, “From natural variation to optimal
policy? The Lucas critique meets peer effects,” Technical Report, National Bureau of Economic
Research 2011.

Ciliberto, Federico, Amalia R Miller, Helena Skyt Nielsen, and Marianne Simonsen,
“Playing the fertility game at work: An equilibrium model of peer effects,” International Eco-

38



nomic Review, 2016, 57 (3), 827–856.
Coase, Ronald Harry, “The nature of the firm,” economica, 1937, 4 (16), 386–405.
Cornelissen, Thomas, Christian Dustmann, and Uta Schönberg, “Peer effects in the work-
place,” American Economic Review, 2017, 107 (2), 425–56.

Cornes, Richard and Todd Sandler, “The simple analytics of pure public good provision,”
Economica, 1985, 52 (205), 103–116.

Dahl, Gordon B, Katrine V Løken, and Magne Mogstad, “Peer effects in program partici-
pation,” American Economic Review, 2014, 104 (7), 2049–74.

Eghbal, Nadia, Roads and bridges: The unseen labor behind our digital infrastructure, Ford
Foundation, 2016.
, Working in public: the making and maintenance of open source software, Stripe Press, 2020.

Elliott, Matthew and Benjamin Golub, “A network approach to public goods,” Journal of
Political Economy, 2019, 127 (2), 730–776.

Falk, Armin and Andrea Ichino, “Clean evidence on peer effects,” Journal of labor economics,
2006, 24 (1), 39–57.
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Fischbacher, Urs and Simon Gächter, “Heterogeneous social preferences and the dynamics of
free riding in public goods,” 2006.

Fogel, Karl, Producing open source software: How to run a successful free software project, ”
O’Reilly Media, Inc.”, 2005.

Giorgi, Giacomo De, Michele Pellizzari, and Silvia Redaelli, “Identification of social in-
teractions through partially overlapping peer groups,” American Economic Journal: Applied
Economics, 2010, 2 (2), 241–75.

GitHub, Inc., “The State of the Octoverse,” 2020. Accessed: 2021–08–27.
, “Choose an open source license: Licenses,” 2022. Accessed: 2022–06–16.

Glaeser, Edward L, Bruce I Sacerdote, and Jose A Scheinkman, “The social multiplier,”
Journal of the European Economic Association, 2003, 1 (2-3), 345–353.

Glazer, Amihai and Kai A Konrad, “A signaling explanation for charity,” The American
Economic Review, 1996, 86 (4), 1019–1028.

Goldsmith-Pinkham, Paul and Guido W Imbens, “Social networks and the identification of
peer effects,” Journal of Business & Economic Statistics, 2013, 31 (3), 253–264.

Gousios, Georgios, “The GHTorrent dataset and tool suite,” in “Proceedings of the 10th Working
Conference on Mining Software Repositories” MSR ’13 IEEE Press Piscataway, NJ, USA 2013,
pp. 233–236.

Graham, Bryan S, “Methods of identification in social networks,” Annu. Rev. Econ., 2015, 7 (1),
465–485.

Greenstein, Shane and Frank Nagle, “Digital dark matter and the economic contribution of
Apache,” Research Policy, 2014, 43 (4), 623–631.

Guryan, Jonathan, Kory Kroft, and Matthew J Notowidigdo, “Peer effects in the work-
place: Evidence from random groupings in professional golf tournaments,” American Economic
Journal: Applied Economics, 2009, 1 (4), 34–68.

39



Hahn, Jungpil, Jae Yun Moon, and Chen Zhang, “Emergence of new project teams from
open source software developer networks: Impact of prior collaboration ties,” Information Sys-
tems Research, 2008, 19 (3), 369–391.

Heckman, James J, “Sample selection bias as a specification error,” Econometrica: Journal of
the econometric society, 1979, pp. 153–161.

Hilton, Michael, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in “2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE)” 2016, pp. 426–437.

Holländer, Heinz, “A social exchange approach to voluntary cooperation,” The American Eco-
nomic Review, 1990, pp. 1157–1167.

Hsieh, Chih-Sheng, Michael D Konig, Xiaodong Liu, and Christian Zimmermann, “Su-
perstar Economists: Coauthorship networks and research output,” Available at SSRN 3266432,
2018.
, , , and , “Collaboration in bipartite networks, with an application to coauthorship
networks,” 2020.

Jacobsen, Mark, Jacob LaRiviere, and Michael Price, “Public policy and the private pro-
vision of public goods under heterogeneous preferences,” Journal of the Association of Environ-
mental and Resource Economists, 2017, 4 (1), 243–280.

Johnson, Justin Pappas, “Open source software: Private provision of a public good,” Journal
of Economics & Management Strategy, 2002, 11 (4), 637–662.

Jr, Frederick P Brooks, The mythical man-month: essays on software engineering, Pearson
Education, 1995.

Kerner, Sean Michael, “Heartbleed SSL Flaw’s True Cost Will Take Time to Tally,” 4 2014.
Accessed: 2021–12–04.

Kotchen, Matthew J, “Voluntary provision of public goods for bads: A theory of environmental
offsets,” The Economic Journal, 2009, 119 (537), 883–899.

Krueger, Alan B, “Economic considerations and class size,” The economic journal, 2003, 113
(485), F34–F63.

Lakhani, Karim R and Robert G Wolf, “Why hackers do what they do: Understanding
motivation and effort in free/open source software projects,” Open Source Software Projects
(September 2003), 2003.

Lee, Lung-Fei, “Identification and estimation of econometric models with group interactions,
contextual factors and fixed effects,” Journal of Econometrics, 2007, 140 (2), 333–374.

Lerner, Josh and Jean Tirole, “Some simple economics of open source,” The journal of indus-
trial economics, 2002, 50 (2), 197–234.
and , “The scope of open source licensing,” Journal of Law, Economics, and Organization,
2005, 21 (1), 20–56.

Lewbel, Arthur, “The identification zoo: Meanings of identification in econometrics,” Journal of
Economic Literature, 2019, 57 (4), 835–903.

Lindquist, Matthew J, Jan Sauermann, and Yves Zenou, “Network effects on worker
productivity,” 2015.

Manski, Charles F, “Identification of endogenous social effects: The reflection problem,” The
review of economic studies, 1993, 60 (3), 531–542.

Mas, Alexandre and Enrico Moretti, “Peers at work,” American Economic Review, 2009, 99
(1), 112–45.

McQuaid, Mike, “The Open Source Contributor Funnel (or: Why People Don’t Contribute To
Your Open Source Project),” 8 2018. Accessed: 2021–12–04.

Meneely, Andrew, Alberto C Rodriguez Tejeda, Brian Spates, Shannon Trudeau,

40



Danielle Neuberger, Katherine Whitlock, Christopher Ketant, and Kayla Davis,
“An empirical investigation of socio-technical code review metrics and security vulnerabilities,”
in “Proceedings of the 6th International Workshop on Social Software Engineering” 2014, pp. 37–
44.

Munaiah, Nuthan, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan, “Curating
github for engineered software projects,” Empirical Software Engineering, 2017, 22 (6), 3219–
3253.

Nagle, Frank, “Open source software and firm productivity,” Management Science, 2019, 65 (3),
1191–1215.
, James Dana, Jennifer Hoffman, Steven Randazzo, and Yanuo Zhou, “Census II of Free
and Open Source Software — Application Libraries,” Technical Report, The Linux Foundation
and The Laboratory for Innovation Science at Harvard March 2022.

Nitzan, Shmuel and Richard E Romano, “Private provision of a discrete public good with
uncertain cost,” Journal of Public Economics, 1990, 42 (3), 357–370.

Oberhaus, Daniel, “The Complicated Economy of Open Source Software,” February 2019. Ac-
cessed: 2021–09-23.
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A Tables

Table 1: Descriptive Statistics – Primary Measures in Empirical Sample

Measure Notation Count Mean SD Min Median Max

Project commits (total) ap 2,287 2,490 7,720 23 825 188,292
Individual commits (total) ai 107,921 53 669 1 2 186,464
Project commits (monthly) apt 96,453 59 294 1 16 73,161
Individual commits (monthly) ait 421,879 13 129 1 3 73,145
Cumulative individual commits (monthly) ãit 421,879 278 1,109 1 28 186,464
Cumulative project commits (monthly) ãpt 96,453 1,989 6,295 1 532 188,292
Individual commits (project-month) aipt 440,111 13 126 1 3 73,145
Peer commits (project-month) a-ipt 440,111 188 398 0 59 73,160
Cumulative individual commits (project-month) ãipt 440,111 256 1,076 1 23 186,447
Cumulative peer commits (project-month) ã-ipt 440,111 2,096 6,630 0 262 124,932
Number of peers (project-month) nipt 440,111 17 29 0 7 310
Cumulative GitHub Stars (project-month) ypt 96,294 910 2,924 0 161 81,817
GitHub active days (monthly) gadit 411,427 3.88 4.67 1 2 31
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Table 2: Reduced Form – Individual Level Peer Effects Estimates (Baseline Estimates
for peer effect δ from Equation (1))

OLS IV 2SLS
Individual Commits Individual Commits

(1) (2) (3) (4) (5) (6)

Peer Commits 0.0078 0.0065 0.0035 -0.0035 0.0089 0.0102
(0.0011) (0.0018) (0.0034) (0.0015) (0.0037) (0.0251)

Individual Commits (cumulative) - 0.0332 0.0529 - 0.0333 0.0529
- (0.0134) (0.0434) - (0.0134) (0.0435)

Individual Commits (previous month) - 0.2604 0.1853 - 0.2604 0.1853
- (0.1763) (0.0902) - (0.1763) (0.0902)

Peer Commits (cumulative) - -0.0020 -0.0024 - -0.0020 -0.0024
- (0.0009) (0.0019) - (0.0009) (0.0019)

Peer Commits (previous month) - 0.0051 0.0036 - 0.0044 0.0039
- (0.0022) (0.0032) - (0.0024) (0.0046)

Peer Group Size - 0.0017 0.0898 - -0.0093 0.0158
- (0.0662) (0.1457) - (0.0553) (0.3760)

Controls No Yes Yes No Yes Yes
Fixed Effects No No Yes No No Yes
N 440,111 433,867 433,867 436,287 433,867 433,867
R2 0.0006 0.1802 0.2268 -0.0007 0.1802 0.2267
First stage F statistic 6,520 1,151 64.37

Note: Columns (1)–(6) present the coefficient estimate δ̂ from Equation (1) in which aggregate peer commits are regressed on

individual commits. Standard errors appear in parentheses below the coefficient estimate. Columns (1), (2), (4), and (5) use

heteroskedasticity-robust standard errors while Columns (3) and (6) cluster standard errors by project. Column (4) through (6)

additionally report the cluster-robust F-statistic from the first stage of the two-stage least squares procedure. Control variables

include three lags of individual and peer commits, cumulative individual and peers commits, project quality measured in GitHub

stars, quadratic terms for project age and peer group size, and dummy variables indicating if the individual is a project owner,

project member, or if they are affiliated with a firm. Fixed effects included are individual, project, and year-month.
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Table 3: Reduced Form – Individual Level Peer Effects (Estimates of peer effect δ from Equation (1)
with covariate interaction terms)

OLS IV 2SLS
(1) (2) (3) (4) (5) (6)

Peer Commits 0.0078 0.0065 0.0167 -0.0035 0.0497 -0.0721
(0.0011) (0.0020) (0.0105) (0.0015) (0.0354) (0.1562)

Peer Commits × -1.47 ×10−5 -0.0002 -0.0002 0.0003
Peer Group Size (2.59 ×10−5) (0.0001) (0.0001) (0.0009)

Peer Commits × 0.0004 0.0004 0.0004 0.0004
Lagged Individual Commits (0.0001) (0.0002) (0.0001) (0.0002)

Peer Commits × -3.09 ×10−6 -2.32 ×10−6 -2.54 ×10−6 -2.6 ×10−6

Lagged Peer Commits (1.54 ×10−6) (1.13 ×10−6) (1.16 ×10−6) (1.5 ×10−6)
Peer Commits × -3.82 ×10−5 -4.9 ×10−5 -3.74 ×10−5 -4.89 ×10−5

Cumulative Individual Commits (1.86 ×10−5) (3.39 ×10−5) (1.81 ×10−5) (3.36 ×10−5)
Peer Commits × 1.81 ×10−6 1.93 ×10−6 1.83 ×10−6 2.03 ×10−6

Cumulative Peer Commits (1.07 ×10−6) (6.3 ×10−7) (1.08 ×10−6) (7.57 ×10−7)
Peer Commits × 6.18 ×10−8 2.82 ×10−7 5.24 ×10−8 -3.03 ×10−7

Project Quality (1.87 ×10−8) (3.5 ×10−7) (2.42 ×10−8) (9.98 ×10−7)
Peer Commits × 0.0451 0.3513 0.0329 0.3732

Project Owner (0.0753) (0.2380) (0.0848) (0.2455)
Peer Commits × 0.0093 0.0070 0.0001 0.0311

Project Member (0.0065) (0.0066) (0.0039) (0.0412)
Peer Commits × -3.55 ×10−6 7.89 ×10−6 -1.23 ×10−5 3.17 ×10−5

Project Age (1.54 ×10−6) (7.89 ×10−6) (8.59 ×10−6) (4.73 ×10−5)
Controls No Yes Yes No Yes Yes
Fixed Effects No No Yes No No Yes
N 440,111 433,867 433,867 436,287 433,867 433,867
R2 0.0006 0.1910 0.2372 -0.0007 0.1891 0.2351
First stage F statistic 6,520 389.5 57.177

Note: Columns (1)–(6) estimate specifications corresponding to those presented in Table 2 with the inclusion of terms interacted with aggregate peer

effort (RHS endogenous term).
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Table 4: Reduced Form – Temporal Heterogeneity in Individual Level Peer Effects (Estimates of
peer effect δ from Equation (1) for subsamples disaggregated by time period)

OLS IV 2SLS
(1) (2) (3) (4) (5) (6)

2008 - 2012 0.0119 0.0271 0.0267 -0.0104 -0.0270 -0.0359
(0.0011) (0.0017) (0.0077) (0.0020) (0.0235) (0.0487)

N 20,399 20,209 20,209 20,262 20,262 20,209
R2 0.0077 0.5158 0.6288 -0.0196 0.4807 0.6010
First stage F statistic 3,677 57.00 85.29

2012 - 2016 0.0178 0.0155 0.0228 -0.0237 0.0037 -0.1262
(0.0005) (0.0006) (0.0028) (0.0008) (0.0016) (0.2851)

N 146,778 145,952 145,952 146,256 145,952 145,952
R2 0.0279 0.4975 0.5837 -0.1244 0.4937 0.3716
First stage F statistic 6,637.1 1,543 8.405

2016 - 2019 0.0056 0.0052 0.0032 -0.0013 0.0165 -0.0009
(0.0010) (0.0017) (0.0026) (0.0020) (0.0076) (0.0385)

N 272,934 267,706 267,706 269,769 267,706 269,706
R2 0.0003 0.1835 0.2696 -0.0001 0.1829 0.2696
First stage F statistic 3,491.0 607.9 35.63

Note: Columns (1)–(6) estimate specifications corresponding to those presented in Table 2 distinctly for

sub-samples disaggregated by time period.
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Table 5: Reduced Form – Beyond Contemporaneous Individual Level Peer Effect
Estimates (Estimates for peer effect δ from Equation (13))

OLS IV 2SLS
Individual Commits Individual Commits

(1) (2) (3) (4) (5) (6)

Peer Commits 0.0139 0.0212 0.0068 -0.0145 0.0575 0.0881
(0.0009) (0.0042) (0.0070) (0.0018) (0.0110) (0.0914)

Individual Commits (cumulative) - -0.0051 -0.0063 - -0.0074 -0.077
- (0.0020) (0.0047) - (0.0021) (0.0056)

Individual Commits (previous month) - 0.3158 0.1036 - 0.3014 0.0949
- (0.2402) (0.2433) - (0.2355) (0.2410)

Peer Group Size - -0.0175 -0.0071 - -0.7290 -1.835
- (0.1270) (0.4223) - (0.2148) (2.068)

Controls No Yes Yes No Yes Yes
Fixed Effects No No Yes No No Yes
N 440,111 433,867 433,867 436,287 433,867 433,867
R2 0.0021 0.1802 0.2274 -0.0066 0.2200 0.3100
First stage F statistic 4,376 124.9 32.16

Note: Columns (1)–(6) present the coefficient estimate δ̂ from Equation (13) in which aggregate peer commits from the

preceding 3 months are regressed on individual commits for the subsequent 3 months. Covariate controls and fixed effects

correspond to the estimates in Table 2.

Table 6: Reduced Form – Project-Level Estimates (Historical Project Contribution regressed
on Contemporaneous Project Contribution)

OLS
Project Commits

(1) (2) (3) (4) (5) (6) (7)

Project Commits (1 month prior) 0.4502 0.3188 0.3188 0.3186 0.2804 0.3186 0.2803
(0.2216) (0.1998) (0.2000) (0.0387) (0.0449) (0.0386) (0.0450)

Project Commits (2 months prior) - -0.0383 -0.0383 -0.0384 -0.0632 -0.0384 -0.0633
- (0.0666) (0.0659) (0.0289) (0.0349) (0.0288) (0.0350)

Project Commits (3 months prior) - 0.1224 0.1223 0.1222 0.0882 0.1221 0.0880
- (0.0391) (0.0384) (0.0311) (0.0394) (0.0309) (0.0396)

Project Commits (cumulative) - 0.0156 0.0156 0.0157 0.0159 0.0157 0.0160
- (0.0039) (0.0033) (0.0067) (0.0148) (0.0067) (0.0149)

Controls No Yes Yes Yes Yes Yes Yes
Fixed Effects: Time No No Yes No No Yes Yes
Fixed Effects: Project No No No No Yes No Yes
Fixed Effects: Language No No No Yes No Yes No
N 96,453 96,294 96,294 96,294 96,294 96,294 96,294
R2 0.19555 0.27487 0.27567 0.27494 0.30079 0.27575 0.30159

Note: Columns (1)–(7) contain coefficient estimates for current month total project contribution regressed on project contribution in

previous months and the cumulative project contribution. Other controls include lagged and cumulative numbers of project contributors,

project quality, and quadratic terms for project age. Columns (1) and (2) report heteroskedasticity-robust standard errors, Column (3)

clusters standard errors by month, Columns (4) and (6) by project language, and Columns (5) and (7) by project.
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Table 7: Reduced Form – Project-Level Estimates (Historical Number of Contributors regressed on
Contemporaneous Number of Contributors)

OLS
Number of Project Contributors

(1) (2) (3) (4) (5) (6) (7)

Number of contributors (1 month prior) 0.8822 0.6082 0.6085 0.6080 0.5187 0.6082 0.5188
(0.0166) (0.0430) (0.0459) (0.0422) (0.0380) (0.0423) (0.0382)

Number of contributors (2 months prior) - 0.1175 0.1167 0.1173 0.0778 0.1166 0.0774
- (0.0408) (0.0477) (0.0248) (0.0346) (0.0251) (0.0348)

Number of contributors (3 months prior) - 0.1772 0.1769 0.1769 0.1307 0.1767 0.1306
- (0.0311) (0.0336) (0.0266) (0.0196) (0.0263) (0.0194)

Number of contributors (cumulative) - 0.0007 0.0007 0.0007 -0.0008 0.0007 -0.0008
- (0.0002) (0.0002) (0.0002) (0.0004) (0.0003) (0.0008)

Project Commits (cumulative) - 1.01e-5 1.04e-5 1.01e-5 0.0001 1.05e-5 0.0001
- (8.09e-6) (8.07e-6) (8.1e-6) (1.69e-5) (1.13e-5) (4.33e-5)

Controls No Yes Yes Yes Yes Yes Yes
Fixed Effects: Time No No Yes No No Yes Yes
Fixed Effects: Project No No No No Yes No Yes
Fixed Effects: Language No No No Yes No Yes No
N 96,453 96,294 96,294 96,294 96,294 96,294 96,294
R2 0.77107 0.79349 0.79494 0.79354 0.81159 0.79499 0.81299

Note: Columns (1)–(7) contain coefficient estimates for the number of contributors for a project in the current month regressed on the number

of contributors in previous months and the cumulative number of project contributors. Other controls include lagged and cumulative project

contribution, project quality, and quadratic terms for project age. Columns (1) and (2) report heteroskedasticity-robust standard errors, Column

(3) clusters standard errors by month, Columns (4) and (6) by project language, and Columns (5) and (7) by project.
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Table 8: Structural Model Notation

i, j ∈ N agents where |N | = N
p ∈ P OSS projects where |P| = P
t ∈ T time periods where |T | = T

aipt ∈ R+ agent i’s contribution to project p in period t
ypt ∈ R quality of project p in t

bpt =
∂ypt
∂aipt

marginal product of labor in terms of public good quality

xit ∈ R+ agent i’s consumption of numeraire good (e.g. time)
ωit ∈ R+ agent i’s numeraire endowment

zipt agent i’s latent “ability” in project p at time t (see Equation (6))
zp project p’s latent “ability threshold” (see Equation (6))

vipt private contribution benefit for agent i in project p at time t
cipt contribution cost (inverse productivity) for agent i in project p at time t
γ extensive margin peer effects (see Equation (10))
δv intensive margin peer effects for marginal private benefits of contribution
δc intensive margin peer effects for marginal private costs of contribution

(see Equation (11))
βz control variable parameters for latent agent productivity zipt in extensive

margin decision (see Equation (10))
βv control variable parameters for marginal private benefits of contribution

(see Equation (12))
βc control variable parameters for marginal private cost of contribution (see

Equation (12))
ϵzipt Unobserved factors influencing extensive margin decision (see Equa-

tion (10))
ϵvipt Unobserved factors influencing marginal private benefit shock vipt (see

Equation (12))
ϵcipt Unobserved factors influencing marginal private cost shock cipt (see Equa-

tion (11))
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B Figures

Figure 2: Example GitHub Repository Page – twbs/bootstrap
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Figure 3: Descriptive Statistics – Project Creation Dates and Earliest Commits
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Figure 4: Descriptive Statistics – Distribution of Project-level Contribution Shares
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Figure 5: Descriptive Statistics – Aggregate contribution in sample
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Figure 6: Descriptive Statistics – Distinct contributors in sample
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Figure 7: Descriptive Statistics – Mean individual and peer contribution per project
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Figure 8: Reduced Form – Project Heterogeneity (Distribution of project-level estimates of δ̂ for
Equation (1))
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Figure 9: Reduced Form – Temporal Heterogeneity (Estimates for Equation (1) over sample period.
The top subplot includes estimates for the peer effect coefficient δ̂ of Equation (1) within annual
cross-sectional sub-samples. The bottom subplot includes estimates for the peer effect coefficient
within cumulative sub-samples (i.e., all observations ≤ t).)
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Figure 10: Reduced Form – Insider Contribution and Crowding Out (Estimates for δ in Equa-
tion (14))
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Figure 11: Structural Model – Recovered Benefit and Productivity Shocks vipt, cipt and marginal
product of labor parameters bpt for all observed contribution a⋆ipt > 0 (Equation (8))
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Figure 12: Structural Model – Correlation between Benefit and Productivity Shocks vipt, cipt over
sample period
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Figure 13: Structural Model – Extensive Margin Peer Effects (Project-level estimates for γ from
Equation (10))
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Figure 14: Structural Model – Intensive Margin Peer Effects (Project-level estimates for δv from
Equation (12) and δc from Equation (11))
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Figure 15: Structural Model – Counterfactual Growth in Aggregate Contribution without Peer
Influence
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C Data Details

Sources

We use several data sources for our empirical sample

• GHTorrent86, an archive that seeks to provide an offline, historical record of all public activity
on the GitHub platform. The data is very large (the June 2019 archive is 104 GB compressed)
but includes scripts so that it can be loaded into a relational database management system
for out-of-core analysis. As an alternative, the data is also hosted on Google Big Query.

• Project source code hosted on the GitHub platform. Projects are usually managed by a version
control system (VCS) that, among many other technical features, records a chronological
history of changes to the project’s codebase. This allows us to create measures for project
characteristics over each point in time in the project’s history. On GitHub, the VCS tool
used is git.

Sample Selection

As the number of projects recorded in the GHTorrent dataset is rather unwieldy for analysis by
conventional means, we resort to sampling. We use the following procedure to develop a sample of
popular, collaborative OSS projects hosted on GitHub:

1. From the set of public GitHub projects created before 2019–06–01, select the subset with
(1) 15 or more distinct contributors and (2) 100 cumulative “stars”. Denote this set of top
projects P.

2. Take a 10% random sample P ⊂ P from the set of top projects. This set of core project will
form the basis of projects considered in both the reduced form and structural analysis.

3. For all projects p ∈ P, determine the set of agents Np ≡ {i | aipt > 0∀t ∈ T } that contribute
to p. For core projects P, contribution is observed over time periods t ∈ T where inf(T ) =
2009–11–01 and sup(T ) = 2019–05–01. Collect all core agents into the set N ≡ ∪p∈PNp.

4. WithN ,P and T defined, we can proceed in collecting measures of contribution levels, project
characteristics, and agent characteristics.

86Source: https://ghtorrent.org/
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D Additional Reduced Form Results

We provide some deeper analysis into the reduced form peer effects estimates in an effort to (1)

provide robust support for the baseline peer effects estimates in Table 2 and (2) disentangle the

various forces embedded in the full sample estimates.

Interactions

Various observable factors may be associated with different levels of peer effect on contribution.

For example, agents larger or higher quality projects may respond differently to the contribution

levels of their peers. Peer effects might also vary by the size of the project or peer group itself. We

investigate these effects by estimating a version of Equation (1) that includes interactions between

peer effort and various observables. We present interaction term coefficient estimates in Table 3.

At first glance, it is apparent that the interactions between peer effort and these various

factors are second order compared to the primary peer effect. Moreover, most are statistically

in consequential at conventional levels. It is interesting to note, however, that peer effects are

strongest when an agent has some cumulative history of contribution with the project. This effect

is stronger than the influence of peer group size and project quality. We interpret this effect as

evidence to the notion that agents form strong affinities to OSS projects and contribute to them

with limited concern over other exogenous factors. There is weak evidence that peer effects are

stronger for agents invested in the project, such as owners and members, but these effects are not

statistically different from zero across specifications.

Temporal Heterogeneity

Given the dramatic growth of OSS participation on GitHub, it is likely that peer effects in the early

days of the platform are different from later years. Table 4 collects estimates of the specifications

in Table 2 for different time periods. Two patterns emerge. First, positive peer effects are stronger

in earlier periods. The Column (3) OLS estimates for years 2008 through 2012 are 0.0208 and

statistically different from zero at conventional significance levels (compared with -0.0014 for the

full sample). This estimate falls to -0.0088 for years 2016 through 2019. It should be noted that the

number of observations in this subsamples are 20,209 and 267,706 respectively. Second, comparing

Columns (3) and (6) across time periods in Table 4 suggests some evidence that the OLS estimates

are positively biased. Finally, we further disaggregate the sample by time to estimate Equation (1)

for (1) annual cross-sectional sub-samples and (2) cumulative sub-samples (i.e., for all observations

≤ t for t ∈ {2008, 2009, . . . , 2019}). We plot these coefficient estimates in Figure 9.

Both Table 2 and Figure 9 suggest that peer effects were more likely to be positive in the early

days of OSS on GitHub. This is consistent with Eghbal (2020)’s observation that “platforms broke

the commons”: early OSS collaboration likely featured smaller, more cohesive project communities

in which work was distributed evenly. As GitHub grew in size, the arrival of many, small-share

contributors helped grow projects in aggregate but coincide with diminished estimates for the peer
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effect.

Project Heterogeneity

There is also considerable project-level heterogeneity in peer effects. Figure 8 plots the distribution

of peer effects obtained by estimating Equation (1) for each project individually. A key takeaway

from Figure 8 is that after accounting for covariates, peer effect estimates are surprisingly rather

symmetric around the null hypothesis of δ = 0. The share of projects in which peer and individual

effort are substitutes and those in which they are complements is relatively well-balanced within

the sample.

Beyond Contemporaneous Peer Effects

The contemporaneous specification in Equation (1) is likely too narrowly defined to capture peer

effects that develop over a span longer than a single month. Since OSS contribution is public

record, peer effects in a general sense need not be strictly contemporaneous. We estimate a version

of this specification that seeks to estimate the effect of recent peer contribution (e.g., previous three

months) on subsequent individual contribution (e.g. preceding three months):

2∑
τ=0

aipt+τ = δ
2∑

τ=0

a-ipt−τ + β′Xipt + ϵipt. (13)

We present estimates of the specification above in Table 5. The estimates in Table 5 are larger in

magnitude compared to the baseline results in Table 2, suggesting peer effects are stronger when

considered under a wider temporal bandwidth.

Project Level Effects

To begin to see how contribution patterns manifest along the extensive margin, we aggregate

contribution to the project-month level and regress (1) aggregate project contribution on cumulative

and lagged contribution (Table 6) and (2) the number of contributors on cumulative and lagged

contributor groups (Table 7). The estimates in columns (6) and (7) of Table 6 imply that aggregate

project contribution is greater, on average, when lagged project contribution is greater. Similarly,

columns (6) and (7) in Table 7 demonstrate that contributor peer groups is autocorrelated on

average. Both of these results suggest that past contribution behavior predicts future participation

along the extensive margin. We explore the potential for extensive margin peer influence more

thoroughly in Section 6.3.

Insider Contribution and Crowding Out

An alternative way to look at peer groups within OSS projects is to distinguish between project

“insiders” and contributors from the wider community. A natural question is whether contribution

from project insiders crowds out contributions from project outsiders. The wider community may
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have strong incentives to free-ride on disproportionate contributions from dominant core contrib-

utors. We define a project insider as an individual who is either the nominal project owner or

a member of the project. We aggregate individual contribution to the project level and split it

into insider contribution ainpt and outsider contribution aoutpt . Our “crowding-out” specification is a

regression of outsider contribution on insider contribution and project level controls:

aoutpt = δainpt + β′Xpt + ϵpt. (14)

We estimate Equation (14) for each period and plot the coefficient estimates for δ̂ in Figure 10.

Estimates for δ̂ are consistently negative and statistically significant, giving strong evidence for

crowding out by project insiders. It is also worthy to note that crowding out appears to increase

in later periods, coinciding with diminishing peer effects over time in Figure 9.
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E Structural Estimation Details

Given data (aipt, ypt, xit) for all i ∈ N , p ∈ P, and t ∈ T , we develop an estimation strategy to

recover

1. Marginal product of labor parameters b = (bpt) from the project quality function in Equa-

tion (3).

2. Private benefit and productivity shocks s = (vipt, cipt) for all a⋆ipt > 0 from the equilibrium

contribution level in Equation (8).

3. (Extensive margin peer effects) Parameters (γ,βz) from Equation (10).

4. (Intensive margin peer effects) Parameters (δc, δv,βc,βv) from Equations (11) and (12).

The parameters of interest are δ = (δc, δv), which drive intensive margin peer effects, and γ, which

drive extensive margin peer effects. For each project p ∈ P, our estimation strategy is as follows:

1. Assume disturbances are jointly normally distributed (ϵzipt, ϵ
v
ipt, ϵ

c
ipt) ∼ N (0,Σ), independent

and identically distributed between agents and time. Within the variance-covariance matrix

Σ, assume that σ2
z = 1. This implies ϵzipt

ϵvipt
ϵcipt

 ∼ N


 0

0

0

 ,

 1 σzv σzc

σzv σ2
v σvc

σzc σvc σ2
c




Notice also that σzv = ρzvσv and σzc = ρzcσc.

2. Given data (aipt, ypt), recover b using Equation (3).

3. Given data (aipt, ypt, xit) and b, recover shocks s using Equation (9), Equation (5), Equa-

tion (3) by means of GMM. Let Pit ≡ {p ∈ P | a⋆ipt > 0} be the subset of projects i

contributes to in time t and |Pit| = Pit. For each i and t, there are 2Pit unknowns: vipt and

cipt for each a⋆ipt > 0. There are Pit first order conditions from Equation (9), Pit equations

for project quality form Equation (3), and one budget constraint (Equation (5)):

aipt = bpt + vipt − cipt > 0 ∀p ∈ Pit

ypt ≤ bpt
∑
j

∑
s≤t

ajps ∀p ∈ Pit

xit +
∑
p

ciptaipt ≤ 1

(15)

Combining the moment conditions in (15), the GMM formulation to recover (vipt, cipt) for
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each agent i and period t given data (aipt, ypt, xit) and parameters bpt, becomes

(vipt, cipt) = argmin
vipt,cipt

1

Pit

∑
p∈Pit

(aipt − bpt − vipt + cipt)
2

s.t. 0 < bpt + vipt − cipt ∀p ∈ Pit

0 < cipt ≤ 1 ∀p ∈ Pit

ypt ≤ bpt
∑
j

∑
t

(bpt + vjpt − cjpt) + bpt
∑
j

∑
s<t

ajps ∀p ∈ Pit

xit +
∑
p

cipt(bpt + vipt − cipt) ≤ 1

(16)

Across all agents and time periods, this implies
∑

i

∑
t(2Pit+1) total moment conditions and∑

i

∑
t 2Pit unknowns.

4. Given data (dipt = 1{aipt > 0},Wipt,Xipt) and shocks s recover (γ, δ,β,Σ), where δ =

(δv, δc) and β = (βz,βv,βc), using the maximum likelihood estimation (MLE) framework

for the Heckman Selection model described by Zhao et al. (2020). Collect quantities ei-

ther observed as data or recovered in the previous stages of estimation into a vector D =

(bpt, dipt, vipt, cipt,Wipt,Xipt). Collect remaining unknown parameters in a vector θ = (γ, δ,β,Σ).

For each project p ∈ P, the MLE optimization problem becomes

max
θ∈Θ

L(θ | D) =
∏
i

∏
t

{f(vipt − cipt | dipt = 1)Pr(dipt = 1)}dipt Pr(dipt = 1)1−dipt

s.t f(vipt − cipt | dipt = 1) =
1

σ
ϕ

(
ϵvipt − ϵcipt

σ

) Φ

(
ρ√
1−ρ2

(
ϵvipt−ϵcipt

σ

)
+

γ′Wipt+β′
zXipt√

1−ρ2

)
Φ(γ ′Wipt + β′

zXipt)

Pr(dipt = d) = Φ(γ ′Wipt + β′
zXipt)

diptΦ(−γ ′Wipt − β′
zXipt)

1−dipt

vipt = δvv-ipt + β′
vXipt + ϵvipt

cipt = δcc-ipt + β′
cXipt + ϵcipt

σ2 = σ2
v + σ2

c − 2ρvcσvσc

ρσ = σzv − σzc
(17)

where ϕ and Φ are the standard normal density and distribution functions, respectively. For

computation convenience, we solve the MLE problem by instead minimizing the negative

log-transformation of L.
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