
No Free Lunch For Programmers: Digital Supply Chains and the
Economics of Software Dependency Management

Sam Boysel∗

March 2, 2023

Abstract

Developers of software projects can leverage the functionality of existing open source projects.
This practice can potentially lower the cost of development albeit at the inherent risk of relying
on external components. A “downstream” project maintainer can choose to “import” elements
of an “upstream” project to outsource functionality, but is uncertain how future changes in this
dependency project may expose her own project to software faults or vulnerabilities. Software
dependency networks therefore represent a “digital supply chain”, an ecosystem of interdepen-
dent public goods that confer an intricate set of both positive and negative externalities for
project maintainers and end users. Focusing on microeconomic fundamentals of the dependency
management problem faced by the risk averse project maintainer, we use both reduced form
and structural approaches to study how dependency networks create value, what forces shape
their formation, and how individual behavior can influence the robustness of equilibrium net-
work structure. We use a sample of open source software projects from the Node.js JavaScript
packaging ecosystem for which contribution and dependency formation decisions are observed in
real-time. Finally, we consider several policy interventions that can improve equilibrium welfare.
In particular, we find that removing less that 1% of core projects can reduce aggregate project
quality by more than 5% for the remaining peers.

∗boysel@usc.edu

boysel@usc.edu

Contents

1 Introduction 1

2 Literature 4

3 Framework 6
3.1 Setting . 7
3.2 Risk Embedded in Dependency Network Structure 9
3.3 A Maintainer’s Choice Between Risky Alternatives 10
3.4 Fragile Dependency Networks . 13

4 Data 14
4.1 Sampling Procedure . 15
4.2 Measuring Software Quality . 17
4.3 Descriptive Statistics . 18

5 Reduced Form 20
5.1 Contribution Levels . 21
5.2 Project Quality . 23
5.3 Dependency Formation . 24
5.4 Robustness . 25
5.5 Summary . 26

6 Structural Approach 27
6.1 Setup . 27
6.2 Equilibrium . 30
6.3 Estimation . 37

7 Counterfactual Analysis 39
7.1 Reducing Fluctuations in Project Quality . 40
7.2 Increasing Developer Risk Aversion . 40
7.3 Key Projects . 41
7.4 Summary . 41

8 Discussion 42

A Figures 49

B Tables 55

C Mathematical Details 60
C.1 Alternative Representations for the Maintainer’s Problem 60
C.2 Expected Project Quality . 62
C.3 Optimal Dependency Formation . 63

D Estimation Details 65
D.1 Additional simplifications to reduce computational burden 66

i

List of Figures
1 An Illustration of Software Dependency Network Basics 7
2 Risk Embedded in Network Structure . 9
3 Risk Aversion . 11
4 Fragility of Dependency Networks . 12
5 Empirical Dependency Network . 49
6 Dependency Network Size . 50
7 Dependency Network Centrality . 51
8 Reduced Form – Project Heterogeneity . 52
9 Reduced Form - Temporal Variation . 53
10 Comparative Statics – Probability of Depdendency Formation 54

List of Tables
1 Descriptive Statistics – Node.js Dependency Network Sample 55
2 Reduced Form Estimates – Project Contribution . 56
3 Reduced Form Estimates – Project Quality . 57
4 Reduced Form Estimates – Dependency Formation 58
5 Counterfactual Analysis . 59

ii

1 Introduction

Modern software typically borrows 70 to 90% of functionality from free and open source software

(FOSS) projects (Nagle et al., 2022). The use of external software components can significantly

lower development costs, reduces the need to “reinvent the wheel”, and allows specialized code to be

organized into modular packages.1 Relationships between projects within this ecosystem are known

as software dependency networks, structures akin to “digital supply chains” in which any number

of downstream dependents can costlessly share functionality served from an upstream dependency

(Eghbal, 2016).2 Given the nature in which modern software services are produced and deployed, it

is important to note that dependent software components can be affected contemporaneously by the

dependencies they borrow from.3 For example, the maintainer of an upstream dependency project

may introduce a change that is backwards incompatible for downstream dependents, forcing the

downstream maintainer to expend development effort to maintain functionality. In more serious

cases, upstream changes may even introduce faults or exploits that can affect the operation and

security of downstream dependents (Ohm et al., 2020). Therefore, a central economic question

in this setting is how the maintainer of a given software project must balance the benefits of

development expedience offered by using existing codebases against the risk introduced by relying

on a network of potentially problematic external dependencies.4

While attractive for efficiently building complex projects, the hidden costs of using software depen-

dencies can range from mild maintenance costs5 to catastrophic risk for downstream applications

and end users. In practice, software developers are said to spend roughly as much time managing

their code and dependencies as they do writing new features (Grams, 2019). Digital supply chain

risk is not just a problem for the maintainers of software projects. Some famous cases demonstrate
1To paraphrase the Unix philosophy espoused by Ken Thompson, “Make each program do one thing well.” (McIlroy

et al., 1978). See Lerner and Tirole (2002) and Baldwin and Clark (2006) for discussions of the economics of software
modularity.

2For example, a visual representation of the dependency network for a sample of Node.js JavaScript projects can
be seen at https://graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096.

3An overview of how services in modern software ecosystems are deployed and maintained can be found in Boldi
and Gousios (2020). Importantly, increased uptake of OSS components by users makes them attractive targets for
malicious actors (Ladisa et al., 2022).

4To paraphrase DeVault (2021), there is “no free lunch” for the maintainers of software.
5A quote from an anonymous developer of the Eclipse integrated development environment (IDE) for Java: “I

only depend on things that are really worthwhile. Because basically everything that you depend on is going to give
you pain every so often. And that’s inevitable.” (Decan et al., 2019)

1

https://graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096

the intricate and pervasive nature of open software components and how faults or changes can

have widespread and costly impacts across dependent userbases.6 In March 2016, the maintainer of

Node.js package left-pad abruptly removed the package from the npm package registry7, making

the software unavailable to thousands of downstream dependents (Schlueter, 2016). This led to

over 2% of all npm packages failing to operate properly until maintainers could replace the missing

functionality. While the package itself was only 17 single lines of code and was replaced imme-

diately, the aftermath of this abrupt removal begins to highlight the extent to which developers

have come to rely on the availability of open code. In April 2014, a Google engineer reported an

exploit that became known as the Heartbleed8 bug in the source code of the OpenSSL library used

for encryption, potentially exposing sensitive user information across an estimated 17% of public

web servers (Mutton, 2014). Similarly, a fix was issued the same day the exploit was reported but

hundreds of thousands of unpatched servers remained vulnerable as late as 2017, five years after the

vulnerability had been introduced into the codebase (Carey, 2017).910 In September 2017, Equifax

publicly announced a vulnerability stemming from their use of the Apache Struts website framework

beginning in May 2017, exposing private records of over 147 million users (US CFPB, 2022). The

company agreed to a settlement with the Federal Trade Commission and the Consumer Financial

Protection Bureau that entitled compromised users of the service up to $425 million USD in resti-

tution (US FTC, 2022). In general, the average cost of a data breach in 2021 was estimated to be

$4.24 million USD (IBM, 2021). Together, these case studies illustrate the scope of vulnerability

under which technological services reliant upon OSS ecosystems operate.

Software dependency networks share features with other networked settings commonly studied in

the economic literature: joint research and development efforts between firms (Goyal and Moraga-

Gonzalez, 2001), innovation and patents (Jaffe et al., 1993; Hall et al., 2005; Acemoglu et al., 2016),
6By “userbase”, we mean the incredibly broad set of stakeholders than have come to rely on the functionality and

security of a given software component: developers who use software as intermediate inputs, individual end users,
private firms, public institutions, etc.

7npm is the Node Package Manager is the de facto standard for developing and distributing Node.js packages. See
https://www.npmjs.com/.

8See https://heartbleed.com/.
9It is thought that the severity of an exploit is amplified if malicious actors are aware that valuable targets remain

exposed to the vulnerability even after its disclosure.
10Yet another recent example of the wide-ranging impact of software faults is the Log4Shell vulnerability, introduced

in 2013 and disclosed in December 2021, which allows an attacker to leak sensitive information passing between
network connected devices (WIRED, 2021). It is estimated that the exploit exposed hundreds of millions vulnerable
devices or 93% of enterprise cloud environment (Wiz, 2021).

2

https://www.npmjs.com/
https://heartbleed.com/

academic publications (Hsieh et al., 2018), linkages between financial institutions (Elliott et al.,

2014; Acemoglu et al., 2015), risk sharing (Fafchamps and Gubert, 2007), and inter-firm trade (El-

liott et al., 2022). OSS projects are collaboratively developed, interdependent network public goods

that generate value as both intermediate and final goods.11 The setting embeds both positive and

negative network externalities in complex ways. Prudent or risk averse maintainers create value for

downstream dependents by freely sharing software functionality with minimal fluctuations in depen-

dency project quality. Linkages can also directly or indirectly transmit contagion between projects

in the form of lapses in functionality, technical debt12, and even software faults and vulnerabilities.

With these features in mind, we seek to study the evolution of these networks and the implications

of equilibrium structure by focusing on the microeconomic behavior of software project maintainers.

Specifically, we develop a framework in which each maintainer will make decisions over (1) a level

of development resources to invest in their own project and (2) which external projects to use as

dependencies in an effort to minimize development costs and maintain a preferred level of expected

project quality.13 In doing so, we can learn which factors influence both (1) the level of overall welfare

induced by the dependency ecosystem and (2) the robustness of equilibrium dependency structure

to cascading failures. After developing some intuition for these mechanics, we can then consider a

set of potential policy interventions that can improve equilibrium welfare, allowing maintainers to

make project development decisions more efficiently.14

The chapter is organized as follows. In Section 2 we survey the literature. In Section 3, we introduce

a framework to ground our study of the sociotechnical software dependency ecosystem, which gives

focus to the behavior of cost-minimizing yet risk averse maintainers making development decisions

for interrelated projects under uncertainty. We illustrate the key features of this setting with simple

examples. In Section 4, we introduce the data used in both the reduced form and structural em-
11For example, a software engineer seeking to develop a project for consumers may opt to use an external dependency

as a production input.
12In engineering and software development, technical or design debt occurs when a short term solution incurs larger

costs over the long run (Techopedia, 2017). Proponents of efficient software design patterns argue that excessive
dependency reliance contributes to technical debt (Jackson, 2019).

13In this sense, transaction costs driven by information asymmetry confront maintainers with a “make-versus-buy”
decision when developing the functionality of their project (Coase, 1937; Williamson, 1975, 1985). Under these
conditions, some maintainers may prefer to invest more development effort in order to avoid external dependencies
and provide a greater degree of “vertical integration” within their project (Grossman and Hart, 1986).

14In other words, either at lower cost or lower uncertainty over project quality, or both.

3

pirical analyses while illustrating several descriptive patterns that guide our methodologies. With

the empirical setting in place, we build intuition over equilibrium outcomes with a reduced form

methodology in Section 5. Finally, in Section 6, we develop a complete structural model of software

dependency network formation, assess its equilibrium properties, and discuss the specifics of esti-

mation. In Section 7 use the estimates of structural parameters to conduct counterfactual analysis

of potential policy interventions. We conclude with final remarks in Section 8.

2 Literature

We begin our study by reviewing relevant strands of literature to illustrate relevant empirical pat-

terns in software dependency management, place the current study into context, and identify existing

methodological approaches that can inform our analysis.

The empirical software engineering literature has established several salient stylized facts to char-

acterize the state of software dependency networks in the wild. Kikas et al. (2017) and Decan et al.

(2019) find substantial indirect dependency between projects in software networks also characterized

by limited direct dependency. Hence, empirical evidence suggests the observed behavior of project

maintainers results in fragile dependency networks, vulnerable to contagion.15 Common types of

vulnerabilities can “break” functionality or expose sensitive user information for a package and its

dependents (Prana et al., 2021). Decan et al. (2018b) find that it takes on average 24 months to find

50% of all vulnerabilities16, vulnerabilities are prevalent across releases, and downstream dependents

often remain unpatched even after vulnerability is fixed upstream. Vulnerabilities can be further

exacerbated by the reuse of software code, both in the form of reused code within packages and by

reusing outdated dependencies (Pham et al., 2010). In some cases, up to 40% of errors in packages

can be traced to changes in upstream projects (Decan et al., 2016). Up to 80% of maintainers do

not keep their dependencies up to date while almost 70% are simply unaware of upstream version

changes (Kula et al., 2017). Vigilant maintainers must not only manage development decisions

within their own codebase, but also track changes upstream
15As put by Zimmermann et al. (2019), such fragile networks can be described as “small world, high risk”.
16The delay between the identification of a vulnerability and the distribution of a patch fixing it is known as

“technical lag” (Decan et al., 2018a; Zerouali et al., 2018).

4

A significant body of research has sought to better understand the mechanics driving these observed

forces in software networks as well as their implications. One strand of literature has explored the

costs of software vulnerabilities, including general inquiries into dependency risk (Schueller and

Wachs, 2022), the link between vulnerability disclosure and firm valuation (Acquisti et al., 2006;

Telang and Wattal, 2007; Anwar et al., 2018), the efficacy of vulnerability rewards programs (Finifter

et al., 2013; Zhao et al., 2015; Roumani et al., 2016), end economic theory behind optimal patch

management (Cavusoglu et al., 2006; Finifter et al., 2013). Several ambitious empirical studies have

even endeavored to estimate the value of the entire OSS digital supply chain itself (Keller et al.,

2018; Robbins et al., 2018). Despite these efforts, the present study fills a gap in the literature by

studying empirically the decision of the individual maintainer to outsource functionality for their

project and how this behavior influences the resulting equilibrium.

Our preferred modelling approach attempts to explain the formation of software dependency net-

works based on the micro-founded behavior of individual maintainers and therefore draws from

several distinct efforts within the economic literature. A starting point for the complementarities in

production and the formation of fragile supply chains under risk was outlined by Kremer (1993).17

More general theoretical treatments have developed theory for the micro-foundations of network

formation under risk aversion (Kovářík and Van der Leij, 2009; Blume et al., 2013; Kovářík and

Van der Leij, 2014).18 The percolation of supply chain disruptions downstream has also been stud-

ied empirically through the use of natural experiments (Bernard et al., 2019; Carvalho et al., 2021).

Motivated by linkages between financial institutions, a considerable number of studies pay particu-

lar attention to conditions under which network structure is susceptible to contagion (Elliott et al.,

2014; Acemoglu et al., 2015; Erol and Vohra, 2018; Marbukh, 2018).

The current study is most closely related to recent work by Elliott et al. (2022), who consider the

formation and robustness of supply chains in the presence of risk. The authors model complex

production networks as the multi-sourcing strategies of individual firms, each subject to idiosyn-
17For overviews on production networks and input-output shock propagation, see Carvalho (2014) and Carvalho

et al. (2021).
18Yet another adjacent strand of research has focused on incentives for agents to form networks insure against risk

(De Weerdt, 2002; Fafchamps and Lund, 2003; De Weerdt and Dercon, 2006; Fafchamps and Gubert, 2007; Bramoullé
and Kranton, 2007; Ambrus et al., 2014)

5

cratic disruptions which therefore exposes the entire network to contagious risk.19 They find that

even when firms can hedge against supply chain risk through multi-sourcing strategies, aggregate

production remains quite sensitive to shocks in equilibrium. As anecdotal evidence suggests similar

patterns may also be present within software dependency networks, the present study represents an

empirical application continuing this strand of research in the domain of open source software and

public good production.

For the purposes of structural estimation, we also look to a more general literature on strategic

network formation (Bloch and Jackson, 2006; Galeotti and Goyal, 2010; Choi et al., 2019; Christakis

et al., 2020) as our objective in Section 6 is simultaneously model the coevolution of agent choice

of actions and link formation by following the work of Hsieh et al. (2022). In the spirit of Ballester

et al. (2006), the authors also integrate a counterfactual analysis that considers the welfare impact of

removing critical agents or “key players” from the network. In Section 7, we adapt this methodology

by simulating dependency formation under the absence of “key dependency projects”. We also draw

from work defining graph theoretic measures of to characterize properties of social networks, such

as node centrality (Bloch et al., 2019; Everett and Schoch, 2022) and network fragility (Doyle et al.,

2005; Wan et al., 2021).

3 Framework

To build intuition for our setting and methodology, we next sketch out a framework for the evolution

of software dependency networks, centering our attention on the problem of an individual project

maintainer who seeks to efficiently develop a level of software quality under uncertainty. We illus-

trate, in turn, the general setting of software dependency networks, how indirect risk accumulates

across interdependent projects, the maintainer’s choice over dependencies, and factors that influence

overall network robustness to perturbations. The discussion in this section is merely meant to fix

ideas and serves as a primer to Section 6, in which we develop a complete micro-founded structural

model to more formally characterize this behavior.
19Elliott et al. (2022)’s consideration of endogenously chosen “relationship strengths” in inter-firm trade is analogous

to our focus on the maintainer’s choice between different dependency projects.

6

Downstream Upstream

i j k

← Inherited functionality−

Figure 1: Project i depends directly on project j and project j depends directly on project k. Hence
Gij = Gjk = 1 are the only non-zero elements of the adjacency matrix G. We say project k is an
indirect dependency of project i. Additional terminology: Project k is upstream of both projects i
and j. Project i is downstream of both projects j and k. It is important to reiterate that Gij = 1
implies that i inherits some functionality from j. In other words, the dependence relationship runs
in the opposite direction of the flow of inherited functionality.

3.1 Setting

Consider a set of software projects i ∈ N = {1, . . . , N}. Each project can be indexed by a measure

of its quality y = (yi)i∈N . Software projects can depend on one another, in which case the dependent

(downstream) project borrows a subset of functionality from the dependency (upstream) project at

a nominal price of zero20, assuming the upstream project is publicly available and released under a

permissive license. These unilateral dependency relationships between projects can be collected into

a directed graph G = [Gij]i,j∈N , which in turn can be represented by the N ×N adjacency matrix

G = [Gij]i,j∈N with elements Gij ∈ {0, 1} for all i, j ∈ N .21 If Gij = 1, then project i imports some

functionality from project j and therefore depends the quality of project j to some extent:

Gij = 1{project i depends on project j}.

Otherwise, Gij = 0. We say package j is a direct dependency of package i if Gij = 1.22 Package k is

an indirect23 dependency of package i if there exists a directed path from package i to package k.24

In the parlance of software dependencies, we can also say that packages i is downstream of package

j and package k is upstream of packages i and j. We illustrate the basics of this networked setting
20Note the “nominal” aspect of free and open source software. The very spirit of this chapter is to highlight sources

of hidden costs associated with relying on public software infrastructure.
21Following convention, Gij = 0 when i = j.
22Alternatively, the graph G can be represented as a tuple G = (N , E) where E = {(i, j) | Gij = 1}.
23In the software development community, indirect dependencies are sometimes known as transitive dependencies.

As “transitive relationship” has a different meaning in social networks literatures, we opt to use the term “indirect
dependency”.

24That is, there exists a directed sequence of distinct dependency relationships {Gij | i, j ∈ S ⊂ N} such that
Gij = 1 for each i, j ∈ S.

7

in Figure 1.

Each project i ∈ N has a corresponding decision-making agent whom we will refer to as the

project maintainer.2526 The objective of each maintainer is to efficiently develop their project while

maintaining its expected quality above a given threshold.27 The action space for each maintainer

i consists of choices over (1) the level of costly development effort to their project, xi > 0, and (2)

the subset of projects to import as dependencies, {Gij}j ̸=i. We assume that the cost of maintainer

i’s development effort is given by ci(xi, G) but that importing software dependencies has an upfront

cost of zero:2829

ci(x,G) =
1

2
x2i −

ai + α
∑
j ̸=i

Gijxj

xi. (1)

We further assume that project quality yi is a linear function of the dependency network G, the

quality of external projects y−i ≡ (yj)j ̸=i, and aggregate effort x ≡ (xj)j∈N :

yi(x, y−i, G) = bixi + β
∑
j ̸=i

Gijyj + ξi. (2)

To introduce risk and uncertainty in this framework, we assume that some share of project quality

ξi is stochastic, unobservable, and known only in distribution by maintainers. Finally, we assume

that maintainers are heterogenous in their relative level of risk aversion and define maintainer i’s

preferences over the quality of their project as ui(x, y,G) = E [vi(yi)] where vi(·) is a Bernoulli

function. For example,

ui(x, y,G) = E
[
−e−riyi

]
. (3)

25We will use the terms project manager and maintainer interchangeably.
26In reality, contribution and design decisions in large OSS projects are often shaped by the consensus of many

distinct developers. We simplify our modeling framework by assuming that any potentially collective decisions made
in equilibrium are ultimately made by a single “project maintainer”.

27In Section 6, we will treat this threshold as exogenously given, unique to each project maintainer, and unobservable
to the econometrician.

28Despite this assumption, using external software likely entails some fixed cost, as the downstream developer
needs to understand and integrate the upstream package into their project. When a rational developer imports a
dependency, we infer that the expected benefit of using the external package outweighs both fixed and marginal
costs of working with the dependencies as well as the perceived risk of the dependency. In our modeling approach,
dependency fixed costs are subsumed into the maintainer’s choice across risky alternatives.

29The cost function in Equation 1 requires some explanation. Without parameter restrictions, aggregate costs may
behave bizarrely as contribution effort increases. If ai > 0, the marginal cost of effort increases with effort up to a
point and then begins to fall. This may capture a scenario in which a developer “learns by doing” and becomes more
efficient as she authors more code. A more problematic scenario may arise if ai > 0 is such that costs are actually
negative. We discuss how these complications influence our estimation in Appendices C and D.

8

i

j

k

l

m

n

(a) Indirect Network

i

j

k

l

m

n

(b) Hub Network

Figure 2: The network in Panel 2a is subject to more indirect risk than the network in Panel 2b.
When considering the extent of both direct and indirect dependence, project n is the most critical
project in both networks.

Here ri > 0 captures maintainer i’s relative risk tolerance: as ri increases, i becomes more risk

averse and enjoys less utility under network G where the quality of her project is subject to greater

fluctuations in quality. Putting all these elements together, we assume that each maintainer chooses

(x⋆i , {G⋆
ij}j ̸=i) to (1) minimize development costs while (2) keeping expected utility over project

quality above a threshold ui:30

(x⋆i , {G⋆
ij}j ̸=i) = argmin

xi>0,{Gij}j ̸=i

ci(x,G) s.t. ui(x, y,G) ≥ ui. (4)

In the remaining subsections we discuss how dependency network structure embeds risk for individ-

ual projects, the decision of a project maintainer to import on external projects, and how network

structure can be prone to fragility.

3.2 Risk Embedded in Dependency Network Structure

We use Example (3.1) and Figure 2 to show how network structure exposes projects to risk in the

form of quality shocks to direct and indirect dependencies.
30We should acknowledge that given the way in which this modeling framework is written, project maintainer

choose dependency relationships on a rather ambiguous basis. A more realistic approach would account that certain
projects require very specific inputs and place little to no value on dependencies that are not relevant to them. For
example, a text-based application would have little need for dependencies providing graphical processing functionality.
This oversimplification stems from both modeling convenience and the lack of available data classifying OSS projects
by functionality. Future work in this space would do well to measure the match quality between various software
projects.

9

Example 3.1 (Risk Embedded in Dependency Network Structure). Consider the example networks

in Figure 2. The set of projects is N = {i, j, k, l,m, n}. In Panel 2a, Gij = Gjk = Gkl = Glm =

Gnm = 1. In Panel 2b, Gin = Gjn = Gkn = Gln = Gmn = 1. Assume that project quality for each

project is the form given by Equation 2. Notice that in both networks, the removal of project n has

the greatest effect on downstream projects. When considering the extent of both direct and indirect

dependence, project n is the most critical project in both networks.

In Panel 2a, the profile of project quality can be represented by the following system:

yi = bixi + βyj + ξi

yj = bjxj + βyk + ξj

yk = bkxk + βyl + ξk

yl = blxl + βym + ξl

ym = bmxm + βyn + ξm

yn = bnxn + ξn

Recursive substitution shows that while project n is subject only to fluctuations in ξn, the remaining

projects inherit some risk from indirect upstream dependents. The unobservable portions of quality

in projects m, l, k, j, and i are βξn + ξm, β2ξn + βξm + ξl, β3ξn + β2ξm + βξl + ξk, . . . and so on.

In Panel 2b, consider the same set of projects under a different (hub) dependency network. Projects

i, j, k, l, and m each depend on project n, which itself has no dependencies. Therefore, relative to

the network in Panel 2a, projects i and j are subject to less indirect risk.

As we have seen in real world examples in Section 1, faults and vulnerabilities in upstream appli-

cations can have consequences in downstream dependents. Maintainers understand this risk and

make development decisions conditional on the current state of the dependency network.

3.3 A Maintainer’s Choice Between Risky Alternatives

Using external software in a project can lower development costs and improve quality but also

entails risk for maintainers. We seek to model dependency formation as a choice conditional on a

10

i

j

k

l

m

n

(a)

i

j

k

l

m

n

(b)

Figure 3: In Panel 3a, maintainer i prefers depending on project k over project l and avoids a
greater level of indirect risk embedded in project l. In Panel 3b, maintainer i prefers l to j despite
a greater level of indirect risk embedded by project l.

maintainer’s private level of risk aversion: a maintainer ought to only use an upstream project as a

dependency if they find it beneficial to their project’s quality net of any risk the dependency intro-

duces. Therefore, conditional on project quality and effort choices (y, x), the dependency selection

elements of the maintainer’s decision in Equation (4) can roughly be summarized as follows:31

Maintainer i uses project j as a dependency ⇐⇒ yi(x, y−i, G+ ij) ≿i yi(x, y−i, G− ij).

We formalize this choice by specifying a utility function ui for the preference relation ≿i that reflects

maintainer i’s individual level of risk aversion in Section 6. Since some portion of project quality

is stochastic and unobservable (ξi), preferences can be represented in terms of expected utility à

la von Neumann-Morgenstern.32 Maintainer preference heterogeneity is a result of in variation

across vi(·; ri), a Bernoulli value function parameterized by a measure of risk aversion ri > 0.33 We

illustrate the maintainer’s choice amongst dependencies with a simple example.

Example 3.2 (Maintainer Risk Aversion and Dependency Choice). Consider maintainer i’s choice

between two candidate dependency projects, j and l, represented in Figure 3. In both panels, project j

depends on project k while project l depends on project m and project n. Conditional on maintainer

i’s preferences for risk, she will choose to depend on a particular project if it improves the expected
31Some notation for modifying a single relationship in a given dependency graph G: Let G+ ij denote the depen-

dency graph that differs from G only in that Gij = 1 and therefore project manager i imports functionality from
project j. Similarly, let G− ij denote a dependency network where the only difference from G is that Gij = 0.

32In other words, ≿i and vi are such that yi(x, y−i, G+ij) ≿i yi(x, y−i, G−ij) ⇐⇒ ui(x, y,G+ij) ≥ ui(x, y,G−ij)
33Therefore, preferences are represented by ui(x, y,G) = E [vi(x, y,G; ri)].

11

i

j

k

l

m

n

(a) Central project is low risk

i

j

k

l

m

n

(b) Central project is high risk

i

j

k

l

m

n

(c) Structure isolates risk

i

j

k

l

m

n

(d) Structure amplifies risk

Figure 4: In Panels 4a and 4b, different project characteristics can influence system-wide fragility
for networks with identical structure. In Panels 4c and 4d, different network structures can influence
fragility when projects characteristics are held constant.

quality of her own project. In Panel 3a, maintainer i imports project j as a dependency over packages

l, indicating that she prefers the quality improvement and lower level of indirect risk introduced by

relying on project j over that offered by project l. In Panel 3b, maintainer i instead prefers to use

project l as a dependency. This indicates that although project l embeds more indirect risk than

project j, maintainer i finds the benefits of using l outweigh the costs.

Maintainer preferences for dependency stability is a driving force that determines equilibrium struc-

ture of the network. As we discuss in the following section, this behavior has implications on the

relative robustness or fragility of the entire ecosystem.

12

3.4 Fragile Dependency Networks

Both individual characteristics and the structure of the dependency network combine to expose

individual projects to varying levels of risk, with implications for the overall value or health of the

software ecosystem. We present two examples to illustrate these different channels.

Example 3.3 (Fragile Dependency Networks). Consider two alternative dependency networks in

Panel 4a and Panel 4b of Figure 4. Assume that the only difference between these networks is that

the variability in quality for project n is greater in Panel 4b than it is in Panel 4a. Notice that given

the structure of the dependency networks in both settings, all projects are exposed to disturbances

stemming from project n. In this sense, the network in Panel 4b is relatively more fragile than the

network in Panel 4a since the central or hub project n is riskier.

Next, consider the networks in Panel 4c and Panel 4d. In this case, difference in network structure

can lead to increased fragility. The removal of project n in Panel 4c impacts only project m since

the network is the union of three disconnected components. In Panel 4d, project n is a dependency,

either direct or indirect, for all of its peers. Hence, we can say that the network structure in Panel 4d

is relatively more fragile than in Panel 4c, since the removal of the same project is more disruptive

to overall project quality.

It is useful to consider measures with the potential to characterize a given network G in terms

of fragility. One approach is to consider measures of network centrality. Specifically, consider

Katz-Bonacich centrality for the nodes of the graph G. Roughly speaking, a node has greater

Katz-Bonacich centrality when it is a hub for many other high in-degree nodes.34 In the world of

software networks, central hub dependencies lie at the core of the dependency network and serve,

both directly and indirectly, as the foundation for many other projects. Using the logic outlined

in the beginning of this subsection, software networks characterized by highly centralized projects

may efficiently serve functionality to many dependents, but do so at the cost of increased network

fragility.
34Formally, denote the Katz-Bonacich centrality for project node i in graph G as ki. Then for a decay factor

ρ ∈ (0, 1), Katz-Bonacich centrality is defined as ki(ρ,G) =
∑

ℓ ρ
ℓ ∑

j G
ℓ
ij where ℓ is the length of a walk between

nodes i and j (Bloch et al., 2019). In matrix notation, this becomes (I − ρG)−1ρG1.

13

4 Data

The data used in both our reduced form and structural approaches seeks to characterize (1) the

features and outcomes within software projects and (1) the dependency relationships between them.

How do upstream dependencies influence project contribution and quality? What social or technical

characteristics of projects are associated with many upstream or downstream dependency relation-

ships? Can the equilibrium structure of software dependency networks result from or contribute to

these dynamics? What is the economic significance of these outcomes?

To address these questions empirically, we develop a dataset of sociotechnical measures for a sample

of interrelated OSS projects. We choose to focus on projects from the Node.js JavaScript ecosys-

tem.35 The dependency relationships between widely used open source Node.js projects are tracked

over time by the npm (Node.js package manager) registry. Most critically, the npm registry records

(1) timestamps for when specific versions of packages are published and (2) the set of external de-

pendencies, along with their respective versions, declared by the parent package. Hence, by knowing

what external components a package relies on at a given point in time, we can observe the evolution

of a software ecosystem and its dependency graph as a network panel. A notable advantage of this

data is that it captures more information about the exact timing of package publication dates and

dependency formation compared to single-network observations prevalent in the literature.36 In

addition to simplifying structural estimation, this data enables our structural approach to consider

the interrelated decisions of a project manager over internal project development and dependency

formation with external projects.37

Another attractive property of this empirical setting is that it is possible to observe how sociotechni-

cal features for each individual project evolve over time. The npm registry documents the repository

URL for the package’s source code. Furthermore, a project’s source code is typically managed using

a version control system (VCS), such as git, which has the benefit of chronicling development of
35The rationale for this choice is discussed in sections below. Simply put, the npm is the largest open source package

ecosystem in terms of number of packages (2.61 million packages as of January 2020 (Katz, 2020)). Moreover, we
focus on a single programming language ecosystem to make more appropriate comparisons between packages.

36Previous authors have developed estimation strategies to exploit repeated observations of networks (Snijders
et al., 2010).

37Critically, we can capture the initial conditions of the sample network to overcome any bias that might arise
characterizing the data generating process in our structural approach.

14

the project at high granularity: one can use the version control log to know which developer con-

tributed which lines of code to the project at specific moments in time. We use both the dependency

relationships between packages38 and the technical features of the project recorded in the VCS log.39

In the following sections, we discuss the procedure we use to develop our empirical sample, the

measurement of software quality, and illustrate the dataset with a selection of descriptive statistics.

4.1 Sampling Procedure

Software dependency networks can grow incredibly large and can be observed at a high temporal

granularity. We must therefore resort to sampling a set of representative projects with the potential

to capture the essence of dependency management dynamics. We focus on a single packaging

ecosystem40 to minimize irregularities that may arise from cross-language comparisons. Motivated

by the case studies of major disruptions caused by widely used software projects mentioned in

Section 1, we choose to focus on the largest packaging ecosystem tracked by the Libraries.io service:

npm JavaScript packages.

We will begin by describing how we obtain a set of OSS projects and record their dependency

relationships over time. Our sampling procedure can be summarized by the following steps. In

Step 1, we sample the top ten most widely depended upon Node.js packages in the npm registry

as of September 2022. In Step 2, for each of these packages, we record a sequence of timestamps

associated with minor version releases.41 In Step 3, for each package at a specific timestamped

version, we record the set of upstream runtime42 dependencies the package depends upon at that

point in time. We add this set of dependencies to the running list of sampled projects and return
38Dependency relationships are tracked by the npm registry, a publishing platform for Node.js packages. Once

published on the registry, users and developers can install these packages using the npm (Node.js Package Manager)
tool.

39Technical project features can be observed in the source code of the repository. Some technical details: the
granularity of the VCS log allows us to download the source code of a project and “rewind” it to its state at a specific
point in time.

40In other words, a set of OSS projects written in a common language.
41Best practices in software development encourage the use of semantic versioning, a labelling system for published

releases of software to indicate the degree to which the project has changed. Among other reasons, this is done to
improve downstream compatibility, as managers of dependent projects can use the semantic version to determine if
their dependency is likely to have any breaking or backwards-incompatible changes. See https://semver.org/ for
more details.

42Meaning the dependency is required for the dependent for basic functionality. Maintainers can also declare
dependencies needed only for project development or extended functionality.

15

https://semver.org/

to Step 2. To reduce the size of the resulting sample, we restrict the set of timestamps sampled

to minor package versions and limit the depth of upstream dependency projects sampled to 5th

degree neighbors of the initial set of 10 seed projects. We refer to the set of versioned timestamps

at which a sampled package and its dependencies are observed as our set of sample moments, points

in time at which the dependency network potentially changes.43 Throughout this analysis, we will

refer to this specific recursive network sampling procedure as an upstream sample that captures the

most central projects of the Node.js ecosystem. While this choice of sampling procedure naturally

biases the selection of projects towards core libraries used in the development of larger, user-oriented

projects, it is deliberate. In addition to keeping the size of the sample within reason44, any dynamics

affecting this set of core packages will have widespread influence on downstream packages outside

the sample. Hence, any welfare effects estimated within this core sample can be viewed as a lower-

bound estimate for the npm ecosystem at large. The resulting dependency subnetwork contains 1,263

Node.js projects observed at 40,440 distinct sample moments from October 2010 through September

2022. A snapshot of the network sample as it was observed in September 2022 is depicted graphically

in Figure 5. Evolution of the sample dependency graph over time can be seen in Figure 6.

Once we have obtained a panel of dependency relationships, we next use the source code of each

project to derive measures of sociotechnical outcomes. For each package, we observe these outcomes

for the set of project-specific moments, defined as when either (1) a minor version of the package

is published or (2) a minor version of a package is declared as a dependency of another project.45

We use the repository URL of the project to download a copy of its source code and version

control history.46 For each project moment, we use the VCS log to observe social features such

as the cumulative level of commits to the project (i.e., contribution), the cumulative number of
43It’s important to note the use of the term “potentially”. A new version release of a software package may likely

contain the exact same set of dependencies as the previous version.
44If we had conversely sampled downstream from the top ten most widely depended upon packages, the resulting

sample may include hundreds of thousands of packages.
45Note that to keep the number of observations in the empirical dataset manageable for the purposes of structural

estimation, we do not observe every single package for each moment, only the packages specified in a version’s
changeset. We can get a sense of this technicality from the reduced form estimates in Tables 2 and 3, where the
number of observations ranges from 206,598 to 196,894, depending on the availability of each covariate measure.

46A forensic analysis of software source code revision history for sociotechnical measures falls under a branch of
research in the computer science literature known as mining software repositories (MSR). Notable tools in this space
include reaper (Munaiah et al., 2017), pydriller (Spadini et al., 2018), augur (CHAOSS, 2017), and grimoirelab
(Dueñas et al., 2021).

16

contributors, and the number of core contributors to the project and its associated “bus factor”47,

the project’s age, and an estimate of the number of hours spent48 on project development. We

also use the source code of the project itself to measure49 technical features of the codebase such

as the number of single lines of code (SLOC), the cumulative size of the codebase in megabytes,

the number of files, the number of distinct languages used, and the number of lines in the codebase

that are considered documentation, and other derived measures such as “modularity”, defined as

the number of lines per file in the codebase, and “churn”, the ratio of cumulative commits to SLOC

in the codebase. Projects in which the same sections of code are constantly under revision will,

all else equal, have larger values for the churn measure. Finally, most importantly for our measure

of software project quality, we can derive a measure of sophistication for the codebase known as

cyclomatic complexity.50

4.2 Measuring Software Quality

The notion of a software’s quality is a nebulous concept.51 In the simplest sense, software code

is a collection of instructions for a machine to perform a specific task. Developers and users of a

particular project may derive value from it in different ways. For example, a user may consider a

software of high quality if it can perform its stated purpose successfully, perform efficiently, and do

so with minimal errors. Developers, on the other hand, may understandably place more emphasis

on the “maintainability” of the software’s codebase.52

47We define the number of core contributors as the smallest number of contributors who together have contributed
at least 80% of aggregate commits to the project. This measure is related to the so-called “bus factor” commonly
discussed in the literature, which is used as an estimate of how susceptible a project is to the loss of key contributors.
In our study, we define the bus factor for a project as the count of total cumulative contributors divided by the count
of cumulative core contributors: the greater the bus factor (i.e., closer to 1), the more the project relies on a smaller
set of core contributors. See https://chaoss.community/metric-bus-factor/ for more details.

48We use an algorithm developed by Brunfeldt (2014). See https://github.com/kimmobrunfeldt/git-hours. The
algorithm takes the revision history of the project (i.e. the git log) and identifies distinct “coding sessions”, defined
by sequences of commits made less than 2 hours apart from each other. For each coding session, time allocation is
estimated by the duration as measured by the time between the first commit timestamp of the session and the last.
Finally, the sum of all session durations, from the initial commit at t0 and the final commit before observation at
time t, is the estimated time allocation for the entire codebase observed at t.

49To generate these technical metrics, we use the static code analysis tool Succinct Code Counter, scc (Boyter,
2018). See https://github.com/boyter/scc for more information.

50Cyclomatic complexity measures the number of linearly independent paths through the control flow of a soft-
ware’s functionality. Simply put, smaller and simpler software projects will likely have lower measures of cyclomatic
complexity. See https://www.ibm.com/docs/en/raa/6.1?topic=metrics-cyclomatic-complexity

51See Spinellis et al. (2009) for an overview in methods for evaluating the quality of OSS.
52In economic terms, maintenance costs.

17

https://chaoss.community/metric-bus-factor/
https://github.com/kimmobrunfeldt/git-hours
https://github.com/boyter/scc
https://www.ibm.com/docs/en/raa/6.1?topic=metrics-cyclomatic-complexity

Even after settling on a particular definition of software quality, how can it be measured? The use

quality of a project may be proxied by the extent of popular uptake. How many “followers” have

indicated interest in the project on software development platforms like GitHub? How frequently is

the software discussed by users in external communities?53 Perhaps most pertinent to the present

study, how many external projects depend upon a particular software package? The technical quality

of the project can be measured in yet other ways. For example, static code analysis tools and “linters”

can scan the project’s codebases for potential vulnerabilities, poorly written or documented code,

or other bad software development practices. It is important, however, to acknowledge that each of

these measures have relative strengths and weaknesses. The exact definition of software quality is

likely best defined contingent on the context of its application.

For the purposes of the reduced form and structural analyses, we opt for a rudimentary measure

of software quality designed to reflect two distinct notions of a codebase’s overall value. We say a

project is of high quality if it is (1) complex and (2) attracts numerous contributors.54 This measure

captures both developer interest in contributing to the project along with a rough proxy for the

level of engineering sophistication it entails.55 In some reduced form specifications in Section 5,

we will also argue that the number of downstream dependents a project serves can also be used a

measure of the value or quality of the software project.

4.3 Descriptive Statistics

The sample gives insight over the (1) actions, (2) outcomes, and (3) structure that characterize

a software dependency network. We briefly provide some descriptive statistics for this empirical

sample.

Figure 5 presents a snapshot of the sample dependency network as it is observed in September

2022. At first glance, this snapshot reveals a tendency towards a hub structure for our empirical

sample: a relatively small group of central nodes support their remaining peers both directly and
53For example, we can measure this using the relative frequency of the project’s name in search engine trends or

in software-specific Q&A forums such as StackOverflow.
54Specifically, we will define quality as the sum of log cyclomatic complexity and the log of the number of cumulative

contributors to the project. We then scale the resulting sum to reside within the interval [0, 1].
55Similar measures of OSS codebase quality are used in Libraries.io’s SourceRank metric (Katz, 2020). For addi-

tional information on the SourceRank measure, see https://docs.libraries.io/overview.html#sourcerank.

18

https://docs.libraries.io/overview.html#sourcerank

indirectly. Figure 6 shows the growth in the network over time, revealing that as new packages

enter the ecosystem, the dependency network becomes less dense.56 Lower density networks may

involve additional software development expenditures but at the same time can satisfy a wider

arrange of computing application needs and can also serve to isolate dependency risk. Another way

to characterize the extent to which certain packages are relied upon in the dependency network

is through measures of the package’s centrality. For the purposes of illustration, we observe the

network in several annual snapshots and calculate each node’s (1) Katz-Bonacich centrality and (2)

betweenness centrality.57 We present a bivariate scatter plot of each node’s centrality measures in

Figure 7. Naturally, we can see that smaller networks feature nodes with greater centrality. However,

we can also see that as the network grows larger in later periods, small groups of outlying nodes have

exceptionally greater measures of relative centrality. In a sense, the larger dependency networks

diversify some risk away with the introduction of new packages but few dependency “hubs” serve a

larger number of dependents. Despite these insights, the overall effect of such network structures

on maintainer welfare remains unclear.

Table 1 in Appendix B contains summary statistics, notation, and brief descriptions of the key

sociotechnical project-level measures used in both the reduced form and structural analysis. We

highlight the key insight from these features. Most importantly, the vast majority of these project-

level measures convey a common pattern of (right) skewness across projects that ought to have

bearing on the interpretation of any sample-wide estimates. For example, the median project in the

sample is a terminal dependency with no dependencies of its own, and hence dependency quality

and contribution are both absent (i.e., zero).58 Another important feature of this sample is that

it is skewed towards upstream dependencies: the average (median) package has 2 (1) upstream

dependencies but 5 (2) downstream dependents. Moreover, the average (median) package in the

sample consists of 2,703 (195) cumulative commits and features dependencies with 1,451 (0) cumu-
56We acknowledge this phenomenon may simply be an artifact of our sampling methods. However, Decan et al.

(2018a) document growth in dependency networks by observing the entire population of packages for several ecosys-
tems. In particular, the authors find that package growth in the Node.js ecosystem is exponential over the observation
period, roughly similar to the finding for our empirical sample in Figure 6.

57Greater levels of either centrality metric opens up the network to additional risk, all else being held equal. See
Bloch et al. (2019) and Everett and Schoch (2022) for deeper discussions of network centrality metrics and their
implications for social networks.

58The prevalence of skewness is a pattern reminiscent to the contribution behavior observed in Chapter ??.

19

lative commits.59 Finally, the average (median) package observation consists of 233 (20) cumulative

contributors and 20 (1) core contributors, highlighting the skewed distribution of work in these

ecosystems. A significant share of core dependencies rely on maintenance efforts by a small group

of dedicated individuals. Guided by the framework discussed in Section 3, we give deeper consider-

ation to both (1) the relationships between these various features and (2) network structure itself

throughout the reduced form analysis in Section 5.

5 Reduced Form

Before developing a fully structural model of software dependency management, we begin our anal-

ysis with a reduced form approach to build intuition over empirical patterns. Our objectives in this

section are two-fold. First, we begin to explore the extent to which upstream dependencies influ-

ence downstream dependent projects, by lowering contribution costs or improving project quality.

Second, we estimate several linear specifications in which (1) the number of upstream projects a

maintainer depends upon and (2) the number of downstream dependents a project supports are

regressed in turn on a set of observables such as features of the project itself and the current state

of the dependency network as a whole.

We assume that panel data Dt ≡ (yt, xt, Gt,Wt), is observable by both maintainers and the econo-

metrician where t ∈ T represent a sequence of observations.60 To be consistent with the notation of

our framework outlined in Section 3, here the vector xt ≡ (xit)i∈N contains all project contribution

levels measured in number of commits, the vector yt ≡ (yit)i∈N contains measures of project qual-

ity, Gt captures the dependency network structure61, and Wt ≡ (Wit)i∈N collects node (project)

characteristics at the sample moment t ∈ T . We assume that for the equilibrium captured in these

observables, behavior for maintainer i in each period t is a function of peer actions j ̸= i, the

state of the world Dt−1, and stochastic shocks. Our discussion outlines a set of econometric speci-

fications, provides economic intuition for estimated parameters, and addresses issues pertaining to

identification.62

59This is also likely an artifact of sampling, as many of our observations consist of early period core dependencies
with no observed dependents.

60We will assume that time is discrete and therefore without loss of generality, let T ⊆ N = {1, 2, . . .}.
61In other words, the adjacency matrix for the empirical sample network at moment t.
62Chandrasekhar (2016), Bramoullé et al. (2020), De Paula (2020), Graham (2020), and Graham and De Paula

20

5.1 Contribution Levels

Suppose we are first interested in the relationship between upstream and downstream contribution.

Our preferred econometric specification, given in Equation (5), mirrors the first order necessary

condition from the maintainer’s choice over contribution effort:63

xit = ai + α
∑
j ̸=i

Gijtxjt + δ′Wit + ϵit (5)

. In this specification, the fixed effect ai captures a time invariant propensity for contribution to

project i. The term
∑

j ̸=iGijtxjt in Equation (5) is the sum of contribution activity in project

i’s dependencies. Therefore the parameter of interest in this specification, α ∈ R, measures the

relative influence of upstream contribution on (downstream) contribution to project i. If α < 0,

then increased upstream contribution is associated with less downstream contribution on average.

Conversely, α > 0 implies that downstream contribution increases with the level of upstream de-

pendency development. The direction of this net effect therefore maps into substitution: if α > 0,

upstream and downstream contribution are gross complements. We can interpret this in two ways.

First, the level of upstream development lowers the marginal cost of downstream contribution, gen-

erating a positive productivity effect. Second, large dependency trees require the maintainer of the

downstream dependent to exert considerable effort to integrate and maintain. If α < 0, upstream

and downstream contribution are gross substitutes. This implies that larger dependencies allow

downstream dependents to exert less development effort. Any one of these mechanisms seems plau-

sible and none can be ruled out ex ante. Moreover while the specification assumes a common net

pattern of substitution across projects and time, heterogeneous effects are likely more realistic.

The vector of controls Wit includes other observable characteristics for project i that might conceiv-

ably influence contribution levels.64 Specifically, we include controls such as a measure of project

quality yit, a quadratic term in project age, the total number of contributors as well as the number

of core contributors, technical characteristics of the project such as single lines of code and cyclo-

(2020) provide excellent surveys of empirical methods in social network analysis.
63Recall the maintainer’s problem given in System (4). We will fully specify the maintainer’s optimization problem

in Section 6.
64Therefore δ is a vector of coefficients corresponding to these covariate controls.

21

matic complexity, and temporal lags of both contribution to project i and upstream contribution65.

The term ϵit represents project contribution influences that are unobserved by the econometrician,

independent and identically distributed66, and mean zero in expectation. In a setting in which (1)

dependencies are formed unilaterally, (2) project managers are distinct across projects, and (3) the

dependency network is acyclical, the terms on the right-hand side of Equation (5) are plausibly

exogenous.6768 Therefore, in lieu of more rigorous argumentation, we are reasonably comfortable

interpreting α as the causal effect of upstream contribution on downstream contribution in our fixed

effects specifications.

We summarize coefficient estimates for the specification in Equation (5) in Table 2. To reiterate, the

interpretation for the coefficient estimates for α is the effect of increased dependency contribution

on the level of contribution in downstream projects.69 The main takeaway from these results is

that while in some specifications it would appear that there is a small positive productivity effect

from upstream dependencies (α̂ = 0.034 in Model 1 of Table 2), this effect seems to diminish or

vanish completely on average after controlling for project-specific fixed effects (α̂ = 0.003 in Model

3) and/or covariate controls (α̂ = 0.000 in Model 2). Therefore we cannot say that on average a

downstream project with many large dependencies is necessarily larger in terms of commits once

individual project characteristics are accounted for.

There are several ways to interpret this pooled estimate. First, we must acknowledge that this par-

ticular reduced form model captures only intensive margin productivity effects. One may argue the

sheer fact that the downstream dependent exists at all is simply because the upstream dependency

sufficiently lowers some fixed cost of development. Second, a contemporaneous link between the

project development level across dependencies simply may not exist. This would arise if a developer

imports a dependency once and does not change her own contribution patterns in light of upstream
65That is to say, we include multiple lags of both the left-hand side endogenous and key right-hand side exogenous

variables.
66E[ϵitϵjs] for each j ̸= i ∈ N and t ̸= s ∈ T .
67That is, E[ϵit

∑
j ̸=i Gijtxjt] = E[ϵitW k

it] = 0 for i ∈ N , t ∈ T , all covariates W k
it in the vector Wit.

68Consider the case in which the same set of developers contribute to a project i and its dependency j. In this case,
the potential for simultaneity or reverse causality threatens naive estimates of α with endogeneity bias. A similar
form of endogeneity may arise whenever a set of package dependencies form a cycle. For example, if for the set of
projects i, j, and k, Gij = Gjk = Gki = 1. We assume away any pervasive threats from the former case and argue
that software engineering best practices mitigate the latter.

69On average, ceteris paribus.

22

changes. This certainly can be the case if the dependency is small and not undergoing significant de-

velopment. Finally, the observed equilibrium may describe a situation where large, general-purpose

dependencies enable the efficient development of smaller, more specialized dependent projects.70

5.2 Project Quality

In a similar fashion, we can next turn our attention to the relationship between the quality of a

project and the quality of its dependencies. We use the specification in Equation (6):

yit = b0i + b1ixi + β
∑
j ̸=i

Gijtyjt + δ′Wit + ϵit (6)

. The project quality fixed effect b0i captures an intrinsic level of quality independent of upstream

dependencies, controls, or temporal fluctuations. The term b1i captures the marginal product of

contribution in terms of improving the quality of project i. The aggregate quality of upstream

dependencies at time t is
∑

j ̸=iGijtyijt and therefore the parameter of interest β ∈ R represents an

attenuation factor with respect to quality influences transmitted through the dependency network.

Similar to Equation (5), a vector of controls Wit includes other observables that can potentially

influence quality: cumulative contribution, project age, the size of the contributor base, maintainer

characteristics, and lags of project quality, contribution, and upstream quality. As in Equation (5),

we make similar assumptions for the unobserved component ϵit in Equation (6).71

We summarize coefficient estimates for the specification in Equation (6) in Table 3. Similar to our

analysis of contribution productivity in the previous section, the effect that upstream dependency

projects have on downstream quality is small and largely determined by individual project char-

acteristics. Moreover, it is interesting to note that the number of commits in a project has little

effect on its quality (i.e. b̂1i ≈ 0 in all specifications). We cannot say, given our chosen project qual-

ity metric and conditional on individual project features, that upstream dependencies significantly

improve the quality of downstream dependents.
70An apt analogy in this case may be a parallel between basic (i.e., generic dependencies) versus applied (i.e.

dependents) research studied in the innovation literature.
71Note that the residuals of the regression from estimating the specification in Equation (6) can be used to proxy

for volatility or uncertainty in project quality. More details can be found in our discussion of structural estimation
in Section 6.3.

23

5.3 Dependency Formation

Up until now, our reduced form analysis on the influence of upstream dependencies has focused

exclusively on intensive margin effects from upstream dependencies. We have not addressed factors

that influence the likelihood of dependency formation and therefore know very little about the

extent to which project characteristics and maintainer preferences can drive equilibrium dependency

structure. In this section, we investigate features of OSS projects that either (1) form many upstream

dependencies or (2) serve many downstream dependents. We operationalize this by regressing both

the number of upstream dependencies or the number of downstream dependents a package has on

covariate controls.72

Let dout
it ≡

∑
j ̸=iGijt denote the number of external projects that package i has declared as (up-

stream) dependencies at time t.73 We study factors that drive a package to form many upstream

dependency relationship using the specification described in Equation (7):

dout
it = δ′Wit + ϵit (7)

. where Wit is a vector of observables for project i at time t drawn from Table 1. Similarly, let

din
it ≡

∑
j ̸=iGjit denote the number of external (downstream) projects that declare package i as a

dependency at t.74 Factors that are associated with the attractiveness of package i as a dependency

can be studied using the specification in Equation (8):

din
it = δ′Wit + ϵit (8)

. As the number of downstream dependents is one way to measure a project’s importance or quality,

the specification in Equation (8) is an alternative to the specification in Equation (6) to reveal which
72We acknowledge that there are alternatives to count regression to study characteristics of dependency formation.

For example, we could assess the effect of observables on dependency formation using dyadic regression (Helmers
et al., 2017; Bramoullé et al., 2020):

Gijt = 1{ri + γj + δ′Wijt + ϵijt ≥ 0}

. Without sub-sampling, to estimate such a specification on the entire sample entails an onerous computation burden
and hence we opt for the simpler and arguably more interpretable approach of count regression.

73In graph terminology, the out-degree of node i at time t for the graph Gt.
74In other words, package i’s in-degree.

24

observables features contribute to package quality.

We present coefficient estimates for the specifications in Equations (7) and (8) in Table 4. Several

patterns emerge. First, models (1) through (4) of Equation (7) suggest that higher quality packages

declare a larger number of upstream dependencies. This pattern is notably stronger than the inten-

sive margin quality effects collected in Table 3 and underscores the notion that popular, complex

projects likely outsource much of their functionality to external packages. Second, as expected from

somewhat of a mechanical correlation, packages with more dependencies have higher dependency

quality. However on the other hand, packages with many downstream dependents feature fewer up-

stream dependencies and therefore enjoy less quality effects from their own dependencies.75 Third,

hub dependencies tend to be well documented while packages with many dependencies are not. It

is likely that well documented software is easier to work with and therefore more attractive to use.

Finally, a project’s lines of code, the number of contributors, and age are all not strong predictors

of either upstream or downstream dependency.76

5.4 Robustness

Pooled estimates of the effect of dependencies on downstream contribution and quality may mask

effects present in various sub-samples. To this end, we also estimate the dependency effects α of

Equation (5) and β of Equation (6) at both (1) the project-level and (2) over time, and (3) for the

sub-sample of projects with at least one dependency.

In Figure 8, we can see the project-level estimates for the impact of dependencies on downstream

contribution α are somewhat symmetrically centered around zero. The same is true for upstream

quality effects β at the project level. In Figure 9, we estimate α by annual sub-sample. Interestingly

enough, we can see that the effect of dependencies on downstream productivity is much greater in

earlier sample years when both projects and the dependency network itself were much smaller.

This would suggest earlier periods of the sample dependency network featured a stronger degree of

complementarity between upstream and downstream contribution for core Node.js packages. On the
75One potential explanation for this pattern is modularity: larger and more complex packages import more depen-

dencies and are more likely located downstream in the network.
76We acknowledge that our measure of quality correlates somewhat strongly with SLOC and therefore may simply

not add much predictive power with respect to dependency formation.

25

other hand, upstream quality effects are not markedly different in earlier sample periods compared

to later years or the fully pooled sample.

Finally, we estimate these specifications for the sub-sample of projects with at least one dependency

declared. These estimates ought to reflect dependency influences on the projects that actually rely

on external software for some functionality. However, we find that these estimates are actually quite

similar to those for the pooled sample, especially after controlling for project-specific fixed effects.

5.5 Summary

Overall, our reduced form methodology finds a limited impact of upstream contribution and quality

on downstream project contribution or quality, respectively. The notable exception is that the

impact of dependency contribution seems to have had a stronger impact on downstream contribution

productivity in earlier periods of the sample (Figure 9). An obvious potential explanation for this

effect is that a considerable level of software functionality was absent in earlier periods of the sample

and therefore increased project development effort was required on average. As the space of available

functionality grows with the arrival of new dependencies, less “glue code” was required to integrate

various functional components.

These insights guide our structural approach. First, reduced form analysis emphasizes the com-

plexity of dynamics within the empirical setting of software dependency management. Without a

well-specified structural model, it’s unclear to what extent any of these estimated effects impact

equilibrium welfare. Second, project-level fixed effects (i.e. ai, b0i, b1i) seem to matter much more

than average, intensive margin effects (e.g. α, β) when considering the influence of upstream depen-

dencies on downstream outcomes. This result further motivates a structural approach that permits

counterfactual analysis in which key central projects are removed. Third, the reduced form approach

does not attempt to address factors such as project development costs, uncertainty over dependency

quality, or maintainer risk aversion. We place these considerations at the forefront of our structural

model. Finally, sample evidence suggests that (1) higher quality packages have import dependencies

and (2) well documented packages are more likely to serve as dependencies.

26

6 Structural Approach

Reduced form analysis serves as a starting point for characterizing key empirical patterns that begin

to illustrate the framework outlined in Section 3. We next seek to formalize the microeconomic

behavior of software project maintainers in an effort to explain how dependency networks evolve

over time and deliver benefits to users. Using the network formation model suggested by Hsieh

et al. (2022) as a basis, our structural approach models the coevolution of both individual software

projects and the dependency network. The structural model allows us to conduct two distinct types

of counterfactual policy analysis and assess changes to equilibrium welfare, which we measure as

the aggregate time cost for software developers. First, we can perturb structural parameters such as

the distribution of maintainer risk aversion or variation in project quality. Second, we can simulate

the removal of “key projects” (Ballester et al., 2006).

6.1 Setup

The setup of the structural model follows the framework from Section 3. We specify a project

quality relation, contribution costs, preferences, and information available to each maintainer.77

6.1.1 Project Quality

Project quality yi is a function of (1) contribution effort xi > 0 and (2) dependency relationships

summarized by the directed network:

yi(xi, y−i, G) = bixi + β
∑
j ̸=i

Gijyj + ξi ∀i ∈ N . (9)

Here, bi is the marginal product of manager i’s contribution and β captures the attenuation fac-

tor over quality derived from project i’s upstream dependencies.78 The term ξi are unobservable

influences that partially determine project quality.
77While the model structure captures a sequence of static equilibria over a number of periods, we will suppress

the time subscript throughout most of Sections 6.1 and 6.2 for the sake of streamlined notation. This should not
affect any implications of the model. Assumption 3 in Section 6.2.1 discusses the specific sequence which these static
equilibria follow.

78During estimation, we include a constant term in Equation (9), similar to the reduced form analog in Equation (6),
which we omit here to simplify notation.

27

We opt for a linear quality specification in Equation (9) to simplify the mathematics of strategic

network formation under conventional methods (Mele, 2017; De Paula, 2020; Badev, 2021; Hsieh

et al., 2022). This assumption is not without perils. For example, this functional form implies

that dependencies linearly and continuously influence dependent quality as a function of their size.

In reality, the addition or removal of a key dependency may make or break a package, suggesting

that quality effects are non-linear. In its current form, the best we can do is adapt our data

such that the specification in Equation (9) is log-linear. Either innovations in strategic network

formation modeling or a completely different methodological approach are required to account for

more arbitrary kinds of non-linearity.

6.1.2 Contribution costs

Contribution costs are assumed to be a convex function of effort level xi > 0:

ci(x,G) =
1

2
x2i −

ai + α
∑
j ̸=i

Gijxj

xi. (10)

Notice that ci is decreasing in ai and α, which capture manager i’s own productivity and any

productivity spillovers from contribution in upstream dependencies, respectively.79 Compared with

parameters (bi, β) in (9) which capture the marginal productivity of contribution effort in terms of

project quality, parameters (ai, α) in (10) allow us to distinctly characterize contribution produc-

tivity in terms of marginal costs. As discussed in Section 5, however, if upstream and downstream

contribution are gross complements, then α < 0 and dependency usage imposes net costs on the

maintainer.
79While contribution costs in Equation (10) are expressed in rather arbitrary terms, we can derive a mapping

between contribution costs implied by the structural model and time allocation (hours) to project development, ωi,
observed in the empirical sample. Given estimates for ai, α and data x,G, we can estimate parameters γ0, γ1 from a
simple linear specification:

ci(x,G) = γ0 + γ1ωi + ϵi

28

6.1.3 Preferences

Project managers derive utility from their expected private valuation of their project:

ui(x, y,G) = E [vi (yi)] . (11)

By allowing variation in the Bernoulli function vi(·), we capture the idea that maintainers will differ

with respect to how much dependency risk they are willing to take on. In particular, we will assume

some level of concavity in the function vi(·):

Assumption 1 (Exponential Utility). vi(z; ri) is an exponential or constant absolute risk aversion

(CARA) utility function

vi(z; ri) = −e−riz (12)

where the absolute risk aversion parameter, ri > 0, varies across maintainers i ∈ N .

Under Assumption (1), the parameter ri ∈ R captures project manager i’s relative level of risk

aversion: maintainer i is said to be more risk averse as ri →∞. Since a portion of project quality in

Equation (9) is uncertain and unobservable, the expected quality preferences under Equation (11)

and Assumption 1 together imply that as a project manager becomes more risk averse, she suffers

greater disutility with increased volatility of both her own package and the inherited volatility of

upstream dependencies. We make an assumption over the specific form of this uncertainty in the

following section.

6.1.4 Information Sets

To introduce uncertainty over project quality, we assume that stochastic quality disturbances ξi are

unobservable to maintainers ex ante.

Assumption 2 (Uncertainty in Package Quality). Assume the following

1. ξ
iid∼ N(0,Σ) where Σ = Iσ2 and σ2 = (σ2

i)i∈N are known only in distribution by project

maintainers.

29

2. ξ is independent and identically distributed across time periods.

3. Observables (x, y,G) and parameters θ = (a, α, b, β, r,Σ) are public information to all main-

tainers i ∈ N .

Therefore, maintainers are uncertain about the quality of all projects, including their own. The

risk averse maintainer will enjoy greater utility when she takes actions to minimize exposure of her

project to any sources of quality risk. Since the distribution ξ is common knowledge, the setting is

characterized by a shared level of uncertainty rather than information asymmetries between agents

(e.g., Akerlof (1978)).

6.2 Equilibrium

With the basic elements of the structural model now established, we now discuss how maintainers

are expected to behave in equilibrium. Assume that each project maintainer i ∈ N chooses a

tuple (x⋆i , {G⋆
ij}j ̸=i) to minimize development costs ci(x,G) while keeping their private utility of

expected project quality80 E [vi (yi)] above a threshold ui. We can express the maintainer’s static

cost minimization problem as

min
xi≥0,{Gij}j ̸=i

ci(x,G)

s.t. ui(x, y,G) ≥ ui,

(13)

where ci, yi, and ui are defined in Equation (10), Equation (9), and Assumption 1, respectively. We

analyze the equilibrium of this system is several distinct phases.81 First, we must make an assump-

tion over the sequence of project development choices for each individual maintainer. Second, we

characterize the equilibrium choices of the continuous quantities (y⋆, x⋆). Third, we derive an ex-

pression for the project maintainer’s expected utility over the quality of their project in equilibrium,

E [vi(y
⋆
i)]. Fourth, we characterize factors influencing the formation and dissolution of software de-

pendencies and derive an expression for Pr(Gij = 1), the probability that maintainer i imports

project j. Finally, we conclude with some comparative statics for equilibrium quantities.
80Or put more precisely, maintainer i’s private valuation of expected project quality.
81It should be noted that the maintainer’s optimal choice over contribution levels and dependencies can be repre-

sented with alternative formulations. We present some of these alternatives in Appendix C.1 and discuss how we use
them to map between the exposition here in Section 6.2 and structural estimation covered in Section 6.3.

30

6.2.1 Timing

Maintainers myopically best respond to solve the development cost minimization problem in Equa-

tion (13), conditional on both the state of the system at the beginning of the period, Dt−1 and

the optimal strategies of other maintainers. Here the state of the dependency ecosystem Dt ≡

{yt, xt, Gt,Wt} is defined as it was in Section 5.82

Assumption 3 (Timing). At the beginning of each period t, a single maintainer i ∈ N is presented

with the opportunity to change the dependency relationships of their software project. Next, all

agents i, j ∈ N adjust their contribution levels under the new network. These developments unfold

according to the following sequence:

(S1) Maintainer i chooses a set of optimal dependencies {G⋆
ijt}j ̸=i, conditional on the state of the

ecosystem in the last period, Dt−1. This updates the network to Gt−1 7→ G⋆
t .

(S2) In accordance with the response functions derived in Equation (13), all agents i, j ∈ N deter-

mine their best response contribution levels x⋆it under the new network G⋆
t . This updates the

remaining observables in the ecosystem: xt 7→ x⋆t , yt−1 7→ y⋆t , and Wt−1 7→Wt.

Therefore, by the end of (S2), Dt−1 7→ Dt.

The purpose of Assumption 3, beyond providing some structure to the game, is to connect the data

generating process of the observed data to an estimation strategy that we outline in Section 6.3.83

Observing the disaggregated evolution software dependency networks over time allows us to model

network formation as a sequence choices made by individual agents in each period, greatly simpli-

fying the estimation procedure compared situations often found in the literature84 in which only a

single network observation is observed. In the following two sections, we derive a characterization

of the equilibrium data generating process via backwards induction of the maintainer’s game.
82Note that Dt tracks other observable features of projects Wt even though it has no bearing on the structural

model as specified.
83In the empirical sample, a software project and its dependencies when a new version is registered with the npm

registry. Hence the timing of our model associates each sample moment t ∈ T with a single agent i who then makes
j ̸= i linking decisions, {Gijt}j ̸=i. This updates the network Gt−1 7→ Gt. Then we allow all agents to optimally
adjust their contribution levels conditional on the new network Gt so that (xt−1, yt−1,Wt−1) 7→ (xt, yt,Wt).

84For example, Leung (2015), Mele (2017), Christakis et al. (2020), and Ridder and Sheng (2020), to name a few.

31

6.2.2 Optimal contribution decision (xi)

We first derive equilibrium contribution effort x⋆ and project quality y⋆, taking the dependency

network G as given. The first order necessary conditions for maintainer i’s optimal choice of xi > 0

imply85

x⋆i = ai + α
∑
j ̸=i

Gijx
⋆
j . (14)

In matrix form, the system described in Equation (14) becomes x⋆ = Aa where A ≡ (I − αG)−1

and a = (ai)i∈N . For A to exist, it must be that |α| < 1. Therefore, x⋆i =
∑

j Aijaj . In equilibrium,

this implies project quality will be given by

y⋆i = bi

ai + α
∑
j ̸=i

Gijx
⋆
j

+ β
∑
j ̸=i

Gijy
⋆
j + ξi. (15)

Similarly, y⋆ = B (b ◦ x⋆ + ξ) = B (b ◦ (Aa) + ξ) where B ≡ (I − βG)−1, |β| < 1, and b ◦ x⋆ denotes

the Hadamard product of the vectors b and x⋆: (b ◦ x⋆)i = bix
⋆
i for i ∈ N .

Remark (Leontief Inverse for Software Dependency Networks). The matrices A and B would be

known as the “Leontief inverse” in the literature on input-output modelling and capture the extent

to which the effects, such as increased contribution or fluctuations in quality, percolate through the

dependency network G to affect the welfare of dependents. This is the source of network externalities

in this framework. Notice that if the spectral radius of αG is less than 1, then A = I+
∑∞

k=1 α
kGk.86

Roughly speaking, if maintainer j increases her contribution effort by 1%, then maintainer i will be

induced to increase her contribution effort by Aijaj%. This is the source of productivity and quality

externalities: the use of dependency j influences the marginal cost of contribution for maintainer

i in her own project. For project quality, the influence of dependencies can operate in different

directions since the relative influence of dependency j on project i, Bij = bjxj + ξj, is the sum of
85Technically, since the first-order necessary conditions for the maintainer’s problem in System (13) imply

∂ci(x
⋆,G)

∂xi
= λi

∂ui(x
⋆,y⋆,G)
∂xi

for x⋆
i > 0 and a Lagrange multiplier λi ≥ 0, the parameter ai in equilibrium condi-

tion Equation (14) does not exactly equal the parameter ai from the maintainer’s cost function in Equation (10). We
take a simplifying approach to represent equilibrium effort choice in Equation (14) to simplify both exposition and
estimation. We discuss these details in Appendix C.1, providing alternative characterizations for the maintainer’s
problem in (13) and provide conditions under which the equilibrium allocations (x⋆, y⋆) across these characterizations
coincide. See Proposition 1 in Appendix C.1.

86This concept of attenuating indirect influence from dependencies further and further upstream is akin to Katz-
Bonacich centrality from the perspective of the dependent package. We represent the intuition of this influence in
Example 3.1.

32

an upstream contribution effect bjxj and unobservable fluctuations or uncertainty ξj.

Finally, these simplifications together imply that equilibrium project quality for project i in Equa-

tion (15) can also be expressed as follows:

y⋆i =
∑
j

Bij

(
bj

(∑
k

Ajkak

)
+ ξj

)
.

Notice that equilibrium project quality is therefore simply a function of equilibrium contribution and

fluctuations ξ. The advantage of this characterization of project quality implied by Equations (14)

and (15) is that a maintainer’s utility over the expected quality of their project, ui(x, y,G), can

now be expressed as simply a function of the network G and parameters. We derive an expression

for maintainer utility in the following section.

6.2.3 A Maintainer’s Utility over Expected Project Quality

Before discussing optimal dependency formation behavior, we first seek to simplify the project

manager’s expected utility of their project ui(x, y,G) = E [vi(yi)] under the dependency graph G

and equilibrium contribution x⋆. We will use the derived expression in the subsequent section to

evaluate maintainer i’s expected incremental utility from forming a dependency relationship with

project j.

Conditional on optimal choices of contribution effort, x⋆, the resulting project quality y⋆, and the

dependency graph G, by the normality of ξi stipulated by Assumption 2, ui(x⋆, y⋆, G) becomes

ui(x
⋆, y⋆, G) = −exp

−ri∑
j

Bij

(
bjx

⋆
j −

ri
2
Bijσ

2
j

)
= −exp

−ri∑
j

Bij

(
bj

(∑
k

Ajkak

)
− ri

2
Bijσ

2
j

) .

(16)

Details for this simplification can be found in Appendix C.2. Equation (16) makes clear the notion

that maintainer preferences are shaped by both (1) their relative degree of risk tolerance ri and (2)

the extent to which upstream dependents vary with respect to quality, σ2
j for j ∈ N .

33

6.2.4 Optimal dependency formation decision (Gij)

In the previous section, we saw how preferences reflecting risk aversion influences a manager’s

expected utility of their project in equilibrium. In this section we explore expected incremental

utility changes under the formation of new links. Intuitively, manager i ought only to form a

dependency with project j if, conditional on the realization of linking disturbances, their expected

utility u+ij ≡ ui(x
⋆, y⋆, G + ij) is greater than the utility they expect without using project j,

u−ij ≡ ui(x
⋆, y⋆, G− ij).

First, in order to simplify our modeling of the maintainer’s dependency management decision, we

make a rather strong assumption that there is no upfront cost to creating or removing dependency

relationships. Assumption 4 will change our interpretation of the risk aversion parameter ri such

that it now implicitly subsumes both (1) a level of maintainer risk aversion and (2) the average net

benefit project maintainer i derives from importing dependencies. To introduce this assumption,

we temporarily introduce the notion of time to this exposition.

Assumption 4 (Costless dependency formation). Project maintainers incur a cost of zero to either

import a dependency, G⋆
ijt = 0 7→ G⋆

ijt+1 = 1, or remove a dependency, G⋆
ijt = 1 7→ G⋆

ijt+1 = 0

With Assumption 4, we can approach the maintainer’s dependency management using a conven-

tional methodology (Jackson and Wolinsky, 1996). However, we must also address an additional

complication arising from our specification of maintainer preferences. The non-linearity of ui(·) is to

designed reflect the fact maintainers may vary with respect to the amount of risk they are willing to

introduce into their own project by importing dependencies. This is a notable departure from much

of the literature on strategic network formation, which typically utilize linear utility specifications

to simplify the calculation of incremental changes to utility under different links (De Paula, 2020).

To address this complication, we first make an assumption on the way in which stochastic and

unobserved utility shocks, realized when either forming or not forming the dependency, enter into

this decision. This assumption will then allow us to adopt a change-of-variable technique suggested

by Fosgerau and Bierlaire (2009) in an effort to facilitate easier estimation of parameters within the

maintainer’s discrete choice problem, exploiting the fact that by Assumption 1, ui(·) = E [vi(·)] < 0

34

over its domain. Assume that ε+ij and ε−ij are stochastic and unobserved utility shocks realized by

maintainer i from either forming (ε+ij) or not forming (ε−ij) the dependency with j.

Assumption 5 (Link Formation with Multiplicative Disturbances). Assume ε+ij , ε
−
ij ∈ (0,+∞)

are independent and identically distributed across project pairs and enter the dependency formation

problem of the maintainer multiplicatively. Further, assume that Assumption 4 holds. Upon learning

a realization for (ε+ij , ε
−
ij), project manager i uses project j as a dependency according to the following

rule:

Gij = 1 ⇐⇒ u+ijε
+
ij ≥ u−ijε

−
ij (17)

and Gij = 0 otherwise.

Following the linearization transformation of Fosgerau and Bierlaire (2009), we can show that under

Assumption 5, the equilibrium probability that maintainer i imports project j as a dependency

becomes

Pr(Gij = 1) = Fϵ

ri

∑
j

∆Bijbj

(∑
k

∆Ajkak

)
︸ ︷︷ ︸

Z0ij

−1

2
r2i

∑
j

∆B2
ijσ

2
j


︸ ︷︷ ︸

Z1ij

; θϵ

 , (18)

where θϵ is a vector of parameters for the random variable ϵij ≡ ϵ+ij − ϵ−ij ∼ Fϵ. Complete details for

this derivation can be found in Appendix C.3.87

In Equation (18), we define ∆Bij ≡ B+
ij − B−

ij and ∆Ajk = A+
jk − A−

jk as the difference between

elements of the Leontief inverse matrices for project quality and contribution effects under G + ij

and G − ij.88 Intuitively, ∆Bij and ∆Aij will reflect the change in exposure to net quality and

contribution cost influences that arise when maintainer i imports project j as a dependency.
87Briefly, this simplification works as follows. First, define u+

ij ≡ −λ ln(−u+
ij) and u−

ij ≡ −λ ln(−u−
ij). Second,

define ϵ+ij ≡ −λ ln(ε+ij), ϵ
−
ij ≡ −λ ln(ε−ij). Third, define ϵij ≡ ϵ−ij − ϵ+ij

iid∼ Fϵ(z; θϵ) where λ > 0 and uij ≡ u+
ij − u−

ij ,
ϵij ≡ ϵ−ij − ϵ+ij . Ultimately, Pr(Gij = 1) = Pr(uij ≥ ϵij) = Fϵ(uij ; θϵ/λ) connects equilibrium linking behavior in
Assumption (5) with the empirical likelihood of observing a dependency relationship in Equation (18).

88Let ∆Bij ≡ B+
ij−B−

ij where B+ij = [B+
ij]i,j∈N = (I − β(G+ ij))−1 and B−ij = [B−

ij]i,j∈N = (I − β(G− ij))−1.
Equivalently, let ∆Ajk = A+

jk − A−
jk where A + ij = [A+

jk]j,k∈N = (I − α(G+ ij))−1 and A − ij = [A−
jk]j,k∈N =

(I − α(G− ij))−1.

35

For the purposes of exposition, we rearrange uij into a quadratic function of ri and label the

coefficients Z0ij and Z1ij in the last equality of Equation (18). These coefficients are functions of

the network G and parameters (α, a, β, b,Σ). In Section 6.3 and Appendix D, we show that since

(α, a, β, b,Σ) can be estimated using moment conditions contained in Equations (9) and (14) via

generalized method of moments, the result in Equation (18) will form the basis for a likelihood

function for the remaining unknown parameters, r and θϵ. Hence, under the assumptions outlined

in this section, r and θϵ can be estimated via maximum likelihood.

Finally, a distributional assumption over ϵij to refine Assumption 5 helps inform comparative statics

in Section 6.2.5 and the estimation procedure described in Section 6.3.

Assumption 6. ϵij is a logistic random variable, independent and identically distributed across

potential links and time.

Note that Assumption 6 can be supported if conditional on Assumption 5, ϵ+ij and ϵ−ij are assumed

to be mutually (i.e., across both project pairs and time) independent Gumbel random variables.

6.2.5 Comparative Statics

How do various parameters influence the dependency formation in equilibrium? Consider the effect

of slight perturbations to parameters on the likelihood of dependency formation (Equation (18)):

1. Risk Aversion (ri): Using the likelihood that maintainer i imports project j, one can show

that

∂Pr(Gij = 1)

∂ri


< 0 if Zij < ri

≥ 0 if Zij ≥ ri

since ∂Fϵ
∂z > 0 and ri > 0 and Zij ≡ Z0ij

Z1ij
. Therefore, maintainer i becomes less likely to import

dependency j as her risk aversion ri increases beyond a threshold, Zij . We can interpret Zij

as a net benefit threshold for maintainer i. If Zij < ri, then maintainer i’s is risk averse to

the point that she considers the additional risk of depending upon project j to outweigh the

net benefits in terms of (dis)utility.

36

2. Project Quality Variance (σ2
k):

∂Pr(Gij = 1)

∂σ2
k

≤ 0

Notice also that, since we have ruled out risk seeking preferences by restricting ri > 0, increased

project volatility will deter all maintainers to some extent. This effect will be stronger for

more risk averse maintainers: ∂2 Pr(Gij=1)

∂ri∂σ2
k
≤ 0.

In other words, conditional on our set of assumptions and chosen functional forms, more risk averse

maintainers are less likely to rely on dependencies, ceteris paribus, once they are beyond a certain

threshold.89 Similarly, increased volatility in project quality reduces the likelihood of dependency

formation. Overall, while intuitive, these comparative statics reveal a level of sophistication em-

bedded in the dependency management choice that confronts the project maintainer. Predicting

dependency formation is a function of a variety of different influences. These complexities ought to

guide the design and interpretation of simulated counterfactuals

6.3 Estimation

In general, estimating strategic network formation models is complicated. Two broad classes of ap-

proaches deal with estimating network formation when only a single network observation is available:

(1) non-iterative estimation using link formation strategy is assumed to take place under incomplete

information (Leung, 2015; Ridder and Sheng, 2020) and (2) iterative strategic network formation

where opportunities to form or dissolve links arrive according to some specified sequence (Mele,

2017; Christakis et al., 2020; Badev, 2021; Hsieh et al., 2022). While our model falls into the latter

class, we can further exploit the fact that the dependency network is effectively observed in contin-

uous time. In this case, the complete sequence of linking decisions is known to the econometrician,

an advantage not present in empirical settings where only the final equilibrium network is observed.

By Assumption 3, we leverage this feature to model the data generating process as a Markov chain:

in each period, a single maintainer makes new or revises existing dependency decisions based on the

current state of the network. After this dependency revision is made, all agents can subsequently
89In other words, as ri → ∞.

37

adjust their contribution levels under the new network, and the process repeats with another main-

tainer’s link decision. Our estimation framework is therefore quite similar to the approach described

in Snijders et al. (2010), as the empirical setting bears a closer resemblance to a network panel and

the model falls into a broad class of “stochastic actor-oriented models”. Consequently, our model of

the coevolution of both contribution actions and dependency formation decisions is actually much

simpler than similar approaches in which only a single network observation is available (Badev,

2021; Hsieh et al., 2022). In these cases, a high-dimensionality state space of potential networks

and action profiles must be tracked90 in order to explain observed equilibria.

We relegate full details and discussion of our structural estimation strategy (i.e., the moment con-

ditions and likelihood function) to Appendix D. In broad strokes, the procedure can be described

as follows. The observed data is D = (xt, yt, Gt,Wt)t∈T . Structural parameters to be estimated

are θ = (a, α, b, β,Σ, r, θϵ).91 We break estimation into two phases. In the first phase described in

Steps 1 through 3, we use moment conditions and identities from the structural model to recover

estimates for (a, α, b, β,Σ) using the generalized method of moments (GMM).92 In the second phase

described in Step 4, we combine observed data with the parameter estimates in the first phase to es-

timate (r, θϵ), using equilibrium dependency formation characterized in Equation (18) in maximum

likelihood estimation (MLE).

6.3.1 Dimensionality Reduction

As discussed previously in the description of the empirical sample, we take steps to reduce the di-

mensionality to facilitate and simplify structural estimation. First, we limit the size of the empirical

sample by beginning with a “seed” of just 10 core projects, sample upstream93, and restrict the set of

observed sample moments to only minor versions of package releases. Second, we restrict the range

of the risk aversion parameter r to the half-interval (0, 1] as it is somewhat of a nuisance parame-
90Badev (2021) and (Hsieh et al., 2022) use an approach in which behavior is determined by an exact potential

game, the equilibrium of which can be characterized by a Gibbs measure. Both the presence of externalities and the
non-linear nature of our structural model would make the use of a similar method quite complicated.

91While not a part of the discussion of the structural model in the main body of Section 6, we introduce the
parameter γ in Appendix C.

92We also describe how to use simpler methods such as ordinary least squares (OLS) to recover these parameters
in sequence.

93As opposed to sampling downstream. The top 10 most depended upon packages in the NPM ecosystem features
tens of thousands of downstream dependent packages each.

38

ter which is really only of interest in distribution to characterize the DGP. From a computational

perspective, we discuss additional simplifications to ease structural estimation in Appendix D.1.

7 Counterfactual Analysis

Developing a structural model allows us to completely characterize the data generating process for

the decision-making process of project maintainers and the evolution of the software dependency

network. Importantly, it allows us to explore the effect of counterfactual interventions on the

resulting equilibrium of the system. Specifically, we can either (1) perturb parameters or (2) remove

certain key projects, re-simulate the data generating process94, and analyze the impact of the

counterfactual on contribution, project quality, contribution costs, and project maintainer welfare

(i.e., utility).

To evaluate the impact of each counterfactual, we first must define a social welfare function for the

software dependency graph G, conditional on the set of project N and parameters θ:

uN (G; θ) =
∑
i∈N

ui(G; θ)1/λi . (19)

Notice several notational simplifications.95 Importantly, we rescale each maintainer’s utility by a

factor λi. For the purposes of our counterfactual analysis, we set λi = ri for all i ∈ N , effectively

normalizing welfare by the risk aversion profile. This is done so that differences in welfare under

a given network is not driven by variation in maintainer risk aversion. We also consider simpler

aggregate functions for contribution levels, project quality, and contribution costs. For each coun-

terfactual, we specify a change to parameters or the set of projects and then simulate the data

generating process under this new system, beginning at the beginning of the sample period.96 Us-

ing the aggregate welfare functions, we compare the counterfactual equilibrium for the final sample

period97 with a baseline based on the observed data.
94That is, we can use the arrival sequence of projects observed in the sample moments and use the equilibrium

conditions of the structural model to simulate contribution decisions, project quality evolution, and dependency
formation decisions from for the sample period from start to finish.

95Since each yi is ultimately just a function of x, we can write ui(x,G; θ) and uN (x,G). Furthermore, in equilibrium
x⋆ is really just a function of the network G and parameters θ, we could even go one step further to write uN (G; θ).

96We take the average of 10 counterfactual simulations.
97September 2022

39

7.1 Reducing Fluctuations in Project Quality

Our discussion of structural model comparative statics in Section 6 establishes that risk averse

project maintainers are less likely to use packages highly volatile in quality as dependencies. More-

over, both conventional wisdom and empirical evidence suggest developers are reluctant to import

dependencies that are either immature or subject to frequent, backwards-incompatible changes (Ze-

rouali et al., 2018). Innovations in software best practices can promote stability in the quality of

OSS projects, such as including testing frameworks to ensure intended functionality (Ellims et al.,

2006), using automation and continuous integration to efficiently and safely integrate contributions

from the wider community (Vasilescu et al., 2015; Hilton et al., 2016), keeping the design scope of

the project focused and succinct98, and using systems like semantic versioning to release software

often but in a manner respectful of downstream dependents (Raemaekers et al., 2017; Decan and

Mens, 2019). For the purposes of the counterfactual analysis, we specifically consider alternative

levels of project quality volatility Σ 7→ Σ′ for Σ′ ∈ {0.5Σ, 2Σ, 4Σ}.

7.2 Increasing Developer Risk Aversion

While some theoretical (Walsh and Schneider, 2002) and experimental (Kina et al., 2016) analyses

of risk aversion for software developers exist, there is comparatively little empirical evidence of how

risk tolerance influences project maintainer decision-making and the resulting equilibrium. In our

structural model, the likelihood to import dependencies increases with a maintainer’s level of risk

tolerance, which has the potential to improve package quality and reduce development costs. On the

other hand, increased risk aversion may prevent risky dependency relationships from being formed,

albeit at increased contribution costs. In our counterfactuals, we modify the profile of maintainer

risk aversion r 7→ r′ for r′ ∈ {r + σr,1,min(r)}.99

98Recall the UNIX philosophy: “Make each program do one thing well.”
99That is, when risk aversion for each project maintainer is increased by one standard deviation, equal to 1, and

equal to the minimum value of the estimated from the sample.

40

7.3 Key Projects

In the spirit of the “key player analysis” described by Ballester et al. (2006), Lee et al. (2021), and

Hsieh et al. (2022), we define a key software project i⋆ such that

i⋆ = argmax
i∈N

uN (x,G; θ)− uN\i(x,G; θ), (20)

conditional on a set of parameters θ. We could determine the key project i⋆ by iteratively simulating

aggregate welfare by Equation (20). However, simulating 1,263 counterfactuals entails a significant

computational burden. We therefore opt for a simpler approach of removing the package with the

most downstream dependents in the final period observed in the sample. The package with the most

downstream dependents in our sample is babel, a “tool that helps you write in the latest version of

JavaScript” (Babel, 2014).100 Additionally, we estimate a counterfactual equilibrium after removing

the top ten packages ranked by number of downstream dependents in the final sample period. For

the key player analysis, we compare the welfare of the remaining packages under the baseline with

their outcomes in a world in which the critical set of packages is removed. In this way, we are

estimating the value of externalities the key packages generate for the software network as a whole.

7.4 Summary

We present the results of the counterfactual analysis in Table 5. Overall, the overall impact of our

counterfactuals is comparatively small in percentage terms. This result is largely driven by the

fact that none of our counterfactuals significantly alters the network formation path. We argue

this pattern is driven by the fact that individual project features largely drive project management

decisions, which are in turn robust to marginal perturbations to project quality volatility, risk

aversion, and the removal of core packages.101

In particular, contribution is virtually unchanged under different levels of risk aversion. On the other

hand, the results in Table 5 seem to indicate that significantly increasing maintainer risk aversion
100As of October 2022, the babel package has over 15,450 commits, 1,033 distinct contributors, 5,500 forks, and

41,000 stars on GitHub.
101We should also be forthcoming that this lack of influence on the data generating process may arise because our

model largely treats packages as perfect substitutes. We could enrich further analysis with better information on
each package’s particular functionality.

41

(r′i = 1) can increase aggregate package quality (2.11%) enough to effectively offset the direct

welfare effects102 (−0.04%). In other words, upstream maintainers can create value for downstream

dependents by exercising more discipline when choosing what software to rely on that in turn offsets

increased disutility from quality uncertainty in aggregate.103

The effect of increasing package volatility is slightly more puzzling. We can see that reducing

volatility actually has a small increase on aggregate project quality (0.19%). Increasing volatility

has a larger positive influence on aggregate quality. There is virtually no change to contribution

patterns or welfare. We argue this is a result of strong package fixed characteristics: maintainers

seem less concerned with uncertainty over package unobservables compared with their immediately

appreciable benefits.

Finally, our counterfactuals that remove key packages reveal the most interesting results. Core

packages with the highest Katz-Bonacich centrality measures create significant value for the depen-

dency network: removing the top 10 packages, which number less than 0.8% of the sample, reduces

aggregate package quality by −5.73% for their remaining peers. Moreover, aggregate contribution

falls by −1.3%, suggesting that maintainers find contribution in their own packages complementary

with these upstream core packages.

8 Discussion

In an effort to understand the dynamics and value created by software dependency networks, we have

studied micro-founded decision-making from the perspective of the maintainer of an OSS project.

We have developed both reduced form and structural methodologies and brought them to bear on

an empirical sample of 1,263 Node.js packages observed over time. Overall, we find that individ-

ual project features are largely responsible for driving maintainer decisions. In our reduced form

approach, we find that upstream projects have relatively limited effect on downstream quality and

contribution levels on average. Complementarity between upstream and downstream contribution

was greatest in the earlier periods of the dependency network. Our structural approach, to the
102 ∂ui

∂ri
< 0 for ri > 0.

103One could also interpret this as shifting the burden of risk from dependents to upstream maintainers.

42

best of our knowledge, is the first attempt to micro-found the cost minimization decision of a risk

averse software maintainer within a strategic network formation model. In doing so we can charac-

terize aggregate network evolution as the aggregation of individual decision-making over time. Our

counterfactuals reveal that while the network formation process is relatively robust to perturbing

individual parameters like maintainer risk aversion and project quality volatility, removing highly

critical core dependencies can have outsized influences on package quality downstream.

A better understanding of software dependency formation and its impact on downstream users

concerns a broad population of stakeholders and has even garnered attention at the public policy

level (Executive Order 14028, 2021). Our study develops a framework that would clearly benefit

from extension and further inquiry. In particular, while we have endeavored to cast welfare effects

of dependency networks in terms of production costs, estimates of the consumption value of OSS

remains an ongoing challenge. Additional research is needed to connect the implications of software

dependency management to value created with respect to labor markets, firm profitability, and

innovation.

Finally, while we have attempted to characterize the salient features of this setting in our framework,

our results seem to indicate that individual project features, as well as features of their maintainers,

are critically important to understand welfare effects in detail. A major innovation in this line of

inquiry would be to integrate individual characteristics of maintainers themselves. These charac-

teristics have historically been difficult to observe in aggregate, but recent efforts are underway to

collect more refined information about OSS collaboration communities (CHAOSS, 2017; Dueñas

et al., 2021).

43

References

Acemoglu, D., U. Akcigit, and W. R. Kerr (2016). Innovation network. Proceedings of the National
Academy of Sciences 113 (41), 11483–11488.

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015). Systemic risk and stability in financial
networks. American Economic Review 105 (2), 564–608.

Acquisti, A., A. Friedman, and R. Telang (2006). Is there a cost to privacy breaches? an event
study. ICIS 2006 Proceedings, 94.

Akerlof, G. A. (1978). The market for “lemons”: Quality uncertainty and the market mechanism.
In Uncertainty in economics, pp. 235–251. Elsevier.

Ambrus, A., M. Mobius, and A. Szeidl (2014). Consumption risk-sharing in social networks. Amer-
ican Economic Review 104 (1), 149–82.

Anwar, A., A. Khormali, D. Nyang, and A. Mohaisen (2018). Understanding the hidden cost of
software vulnerabilities: Measurements and predictions. In International Conference on Security
and Privacy in Communication Systems, pp. 377–395. Springer.

Babel (2014). babel.
Badev, A. (2021). Nash equilibria on (un) stable networks. Econometrica 89 (3), 1179–1206.
Baldwin, C. Y. and K. B. Clark (2006). The architecture of participation: Does code architecture

mitigate free riding in the open source development model? Management science 52 (7), 1116–
1127.

Ballester, C., A. Calvó-Armengol, and Y. Zenou (2006). Who’s who in networks. wanted: The key
player. Econometrica 74 (5), 1403–1417.

Bernard, A. B., A. Moxnes, and Y. U. Saito (2019). Production networks, geography, and firm
performance. Journal of Political Economy 127 (2), 639–688.

Bloch, F. and M. O. Jackson (2006). Definitions of equilibrium in network formation games. Inter-
national Journal of Game Theory 34 (3), 305–318.

Bloch, F., M. O. Jackson, and P. Tebaldi (2019). Centrality measures in networks. Available at
SSRN 2749124 .

Blume, L., D. Easley, J. Kleinberg, R. Kleinberg, and É. Tardos (2013). Network formation in the
presence of contagious risk. ACM Transactions on Economics and Computation (TEAC) 1 (2),
1–20.

Boldi, P. and G. Gousios (2020). Fine-grained network analysis for modern software ecosystems.
ACM Transactions on Internet Technology (TOIT) 21 (1), 1–14.

Boyter, B. (2018). scc.
Bramoullé, Y., H. Djebbari, and B. Fortin (2020). Peer effects in networks: A survey. Annual

Review of Economics 12, 603–629.
Bramoullé, Y. and R. Kranton (2007). Risk-sharing networks. Journal of Economic Behavior &

Organization 64 (3-4), 275–294.
Brunfeldt, K. (2014). git-hours.
Carey, P. (2017, 7). Heartbleed’s Heartburn: Why a 5 Year Old Vulnerability Continues to Bite.

The Security Ledger . Accessed: 2022–06–01.
Carvalho, V. M. (2014). From micro to macro via production networks. Journal of Economic

Perspectives 28 (4), 23–48.
Carvalho, V. M., M. Nirei, Y. U. Saito, and A. Tahbaz-Salehi (2021). Supply chain disruptions:

Evidence from the great east japan earthquake. The Quarterly Journal of Economics 136 (2),
1255–1321.

Cavusoglu, H., H. Cavusoglu, and J. Zhang (2006). Economics of security patch management. In
WEIS. Citeseer.

44

Chandrasekhar, A. (2016). Econometrics of network formation. The Oxford handbook of the eco-
nomics of networks, 303–357.

CHAOSS (2017). augur.
Choi, S., S. Goyal, and F. Moisan (2019). Network formation in large groups. Technical report.
Christakis, N., J. Fowler, G. W. Imbens, and K. Kalyanaraman (2020). An empirical model for

strategic network formation. In The Econometric Analysis of Network Data, pp. 123–148. Elsevier.
Coase, R. H. (1937). The nature of the firm. economica 4 (16), 386–405.
De Paula, Á. (2020). Econometric models of network formation. Annual Review of Economics 12,

775–799.
De Weerdt, J. (2002). Risk-sharing and endogenous network formation. Number 2002/57. WIDER

Discussion Paper.
De Weerdt, J. and S. Dercon (2006). Risk-sharing networks and insurance against illness. Journal

of development Economics 81 (2), 337–356.
Decan, A. and T. Mens (2019). What do package dependencies tell us about semantic versioning?

IEEE Transactions on Software Engineering 47 (6), 1226–1240.
Decan, A., T. Mens, M. Claes, and P. Grosjean (2016). When github meets cran: An analysis of

inter-repository package dependency problems. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Volume 1, pp. 493–504. IEEE.

Decan, A., T. Mens, and E. Constantinou (2018a). On the evolution of technical lag in the npm
package dependency network. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 404–414. IEEE.

Decan, A., T. Mens, and E. Constantinou (2018b). On the impact of security vulnerabilities in the
npm package dependency network. In Proceedings of the 15th international conference on mining
software repositories, pp. 181–191.

Decan, A., T. Mens, and P. Grosjean (2019). An empirical comparison of dependency network
evolution in seven software packaging ecosystems. Empirical Software Engineering 24 (1), 381–
416.

DeVault, D. (2021, 11). I will pay you cash to delete your npm module. Accessed: 2022–06–01.
Doyle, J. C., D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka, and W. Willinger

(2005). The “robust yet fragile” nature of the internet. Proceedings of the National Academy of
Sciences 102 (41), 14497–14502.

Dueñas, S., V. Cosentino, J. M. Gonzalez-Barahona, A. del Castillo San Felix, D. Izquierdo-
Cortazar, L. Cañas-Díaz, and A. Pérez García-Plaza (2021). Grimoirelab: A toolset for software
development analytics. 7 (e601).

Eghbal, N. (2016). Roads and bridges: The unseen labor behind our digital infrastructure. Ford
Foundation.

Ellims, M., J. Bridges, and D. C. Ince (2006). The economics of unit testing. Empirical Software
Engineering 11 (1), 5–31.

Elliott, M., B. Golub, and M. O. Jackson (2014). Financial networks and contagion. American
Economic Review 104 (10), 3115–53.

Elliott, M., B. Golub, and M. V. Leduc (2022). Supply network formation and fragility. Available
at SSRN 3525459 .

Erol, S. and R. Vohra (2018). Network formation and systemic risk. Available at SSRN 2546310 .
Everett, M. and D. Schoch (2022). An extended family of measures for directed networks. Social

Networks 70, 334–340.
Executive Order 14028 (2021, 5). Improving the nation’s cybersecurity.
Fafchamps, M. and F. Gubert (2007). The formation of risk sharing networks. Journal of develop-

ment Economics 83 (2), 326–350.

45

Fafchamps, M. and S. Lund (2003). Risk-sharing networks in rural philippines. Journal of develop-
ment Economics 71 (2), 261–287.

Finifter, M., D. Akhawe, and D. Wagner (2013). An empirical study of vulnerability rewards
programs. In 22nd USENIX Security Symposium (USENIX Security 13), pp. 273–288.

Fosgerau, M. and M. Bierlaire (2009). Discrete choice models with multiplicative error terms.
Transportation Research Part B: Methodological 43 (5), 494–505.

Galeotti, A. and S. Goyal (2010). The law of the few. American Economic Review 100 (4), 1468–92.
Goyal, S. and J. L. Moraga-Gonzalez (2001). R&d networks. Rand Journal of Economics, 686–707.
Graham, B. and A. De Paula (2020). The Econometric Analysis of Network Data. Academic Press.
Graham, B. S. (2020). Network data. In Handbook of Econometrics, Volume 7, pp. 111–218. Elsevier.
Grams, C. (2019, 10). How much time do developers spend actually writing code? Acessed:

2022–06–01.
Grossman, S. J. and O. D. Hart (1986). The costs and benefits of ownership: A theory of vertical

and lateral integration. Journal of political economy 94 (4), 691–719.
Hall, B. H., A. Jaffe, and M. Trajtenberg (2005). Market value and patent citations. RAND Journal

of economics, 16–38.
Helmers, C., M. Patnam, and P. R. Rau (2017). Do board interlocks increase innovation? evidence

from a corporate governance reform in india. Journal of Banking & Finance 80, 51–70.
Hilton, M., T. Tunnell, K. Huang, D. Marinov, and D. Dig (2016). Usage, costs, and benefits of

continuous integration in open-source projects. In 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 426–437. IEEE.

Hsieh, C.-S., M. D. König, and X. Liu (2022). A structural model for the coevolution of networks
and behavior. Review of Economics and Statistics 104 (2), 355–367.

Hsieh, C.-S., M. D. Konig, X. Liu, and C. Zimmermann (2018). Superstar economists: Coauthorship
networks and research output. Available at SSRN 3266432 .

IBM (2021, 9). Cost of a Data Breach Report 2021. Accessed: 2022–06–01.
Jackson, J. (2019, 2). To Reduce Tech Debt, Eliminate Dependencies (and Refactoring). Accessed:

2022–06–01.
Jackson, M. O. and A. Wolinsky (1996). A strategic model of social and economic networks. Journal

of Economic Theory 71, 44–74.
Jaffe, A. B., M. Trajtenberg, and R. Henderson (1993). Geographic localization of knowledge

spillovers as evidenced by patent citations. the Quarterly journal of Economics 108 (3), 577–598.
Katz, J. (2020, 1). Libraries.io Open Source Repository and Dependency Metadata. Version 1.6.0.
Keller, S., G. Korkmaz, C. Robbins, and S. Shipp (2018). Opportunities to observe and measure

intangible inputs to innovation: Definitions, operationalization, and examples. Proceedings of the
National Academy of Sciences 115 (50), 12638–12645.

Kikas, R., G. Gousios, M. Dumas, and D. Pfahl (2017). Structure and evolution of package de-
pendency networks. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pp. 102–112. IEEE.

Kina, K., M. Tsunoda, H. Hata, H. Tamada, and H. Igaki (2016). Analyzing the decision criteria
of software developers based on prospect theory. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Volume 1, pp. 644–648. IEEE.

Kovářík, J. and M. J. Van der Leij (2009). Risk aversion and networks: Microfoundations for
network formation.

Kovářík, J. and M. J. Van der Leij (2014). Risk aversion and social networks. Review of Network
Economics 13 (2), 121–155.

Kremer, M. (1993). The o-ring theory of economic development. The Quarterly Journal of Eco-
nomics 108 (3), 551–575.

46

Kula, R. G., D. M. German, A. Ouni, T. Ishio, and K. Inoue (2017, may). Do developers update
their library dependencies? Empirical Software Engineering 23 (1), 384–417.

Ladisa, P., H. Plate, M. Martinez, and O. Barais (2022). Taxonomy of attacks on open-source
software supply chains.

Lee, L.-F., X. Liu, E. Patacchini, and Y. Zenou (2021). Who is the key player? a network analysis
of juvenile delinquency. Journal of Business & Economic Statistics 39 (3), 849–857.

Lerner, J. and J. Tirole (2002). Some simple economics of open source. The journal of industrial
economics 50 (2), 197–234.

Leung, M. P. (2015). Two-step estimation of network-formation models with incomplete information.
Journal of Econometrics 188 (1), 182–195.

Marbukh, V. (2018). Network formation by contagion averse agents: modeling bounded rationality
with logit learning. In 2018 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM), pp. 1232–1233. IEEE.

McIlroy, M., E. Pinson, and B. Tague (1978). Unix time-sharing system. The Bell system technical
journal 57 (6), 1899–1904.

Mele, A. (2017). A structural model of dense network formation. Econometrica 85 (3), 825–850.
Munaiah, N., S. Kroh, C. Cabrey, and M. Nagappan (2017). Curating github for engineered software

projects.
Mutton, P. (2014, April). Half a million widely trusted websites vulnerable to Heartbleed bug.
Nagle, F., J. Dana, J. Hoffman, Steven Randazzo, and Y. Zhou (2022, March). Census II of Free

and Open Source Software — Application Libraries. Technical report, The Linux Foundation and
The Laboratory for Innovation Science at Harvard.

Ohm, M., H. Plate, A. Sykosch, and M. Meier (2020). Backstabber’s knife collection: A review of
open source software supply chain attacks. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pp. 23–43. Springer.

Pham, N. H., T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen (2010). Detection of recurring software
vulnerabilities. In Proceedings of the IEEE/ACM international conference on Automated software
engineering, pp. 447–456.

Prana, G. A. A., A. Sharma, L. K. Shar, D. Foo, A. E. Santosa, A. Sharma, and D. Lo (2021).
Out of sight, out of mind? how vulnerable dependencies affect open-source projects. Empirical
Software Engineering 26 (4), 1–34.

Raemaekers, S., A. van Deursen, and J. Visser (2017). Semantic versioning and impact of breaking
changes in the maven repository. Journal of Systems and Software 129, 140–158.

Ridder, G. and S. Sheng (2020). Estimation of large network formation games. arXiv preprint
arXiv:2001.03838 .

Robbins, C. A., G. Korkmaz, J. B. S. Calderón, D. Chen, C. Kelling, S. Shipp, and S. Keller (2018).
Open source software as intangible capital: measuring the cost and impact of free digital tools. In
Paper from 6th IMF Statistical Forum on Measuring Economic Welfare in the Digital Age: What
and How, pp. 19–20.

Roumani, Y., J. K. Nwankpa, and Y. F. Roumani (2016). Examining the relationship between
firm’s financial records and security vulnerabilities. International Journal of Information Man-
agement 36 (6), 987–994.

Schlueter, I. Z. (2016, 3). kik, left-pad, and npm. Accessed: 2022–06–01.
Schueller, W. and J. Wachs (2022). Modeling interconnected social and technical risks in open

source software ecosystems. arXiv preprint arXiv:2205.04268 .
Snijders, T. A., J. Koskinen, and M. Schweinberger (2010). Maximum likelihood estimation for

social network dynamics. The annals of applied statistics 4 (2), 567.
Spadini, D., M. Aniche, and A. Bacchelli (2018). PyDriller: Python framework for mining software

47

repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering - ESEC/FSE 2018,
New York, New York, USA, pp. 908–911. ACM Press.

Spinellis, D., G. Gousios, V. Karakoidas, P. Louridas, P. J. Adams, I. Samoladas, and I. Stamelos
(2009). Evaluating the quality of open source software. Electronic Notes in Theoretical Computer
Science 233, 5–28.

Techopedia (2017). What is Technical Debt? - Definition from Techopedia. Accessed: 2022–06–01.
Telang, R. and S. Wattal (2007). An empirical analysis of the impact of software vulnerability

announcements on firm stock price. IEEE Transactions on Software engineering 33 (8), 544–557.
US CFPB (2022). Equifax Data breach settlement.
US FTC (2022, February). Equifax Data Breach Settlement.
Vasilescu, B., Y. Yu, H. Wang, P. Devanbu, and V. Filkov (2015). Quality and productivity outcomes

relating to continuous integration in github. In Proceedings of the 2015 10th joint meeting on
foundations of software engineering, pp. 805–816.

Walsh, K. R. and H. Schneider (2002). The role of motivation and risk behaviour in software
development success. Information research 7 (3), 7–3.

Wan, Z., Y. Mahajan, B. W. Kang, T. J. Moore, and J.-H. Cho (2021). A survey on centrality
metrics and their network resilience analysis. IEEE Access 9, 104773–104819.

Williamson, O. E. (1975). Markets and hierarchies: analysis and antitrust implications: a study
in the economics of internal organization. University of Illinois at Urbana-Champaign’s Academy
for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship.

Williamson, O. E. (1985). The economic institutions of capitalism: Firms, markets, relational con-
tracting. University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership
Historical Research Reference in Entrepreneurship.

WIRED (2021, 12). A Log4J Vulnerability Has Set the Internet ’On Fire’. Accessed: 2022–06–01.
Wiz (2021, 12). Log4Shell 10 days later: Enterprises halfway through patching. Accessed: 2022–

06–01.
Zerouali, A., E. Constantinou, T. Mens, G. Robles, and J. González-Barahona (2018). An empirical

analysis of technical lag in npm package dependencies. In International Conference on Software
Reuse, pp. 95–110. Springer.

Zhao, M., J. Grossklags, and P. Liu (2015). An empirical study of web vulnerability discovery ecosys-
tems. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 1105–1117.

Zimmermann, M., C.-A. Staicu, C. Tenny, and M. Pradel (2019). Small world with high risks: A
study of security threats in the npm ecosystem. In 28th USENIX Security Symposium (USENIX
Security 19), pp. 995–1010.

48

A Figures

Figure 5: Empirical Node.js Dependency Network Sample (September 2022 snapshot)

49

2012 2014 2016 2018 2020 2022
Year

0

500

1000

1500

2000

Co
un

t

Packages
Dependencies

Figure 6: Empirical Dependency Network Sample (growth over time)

50

0.028 0.030 0.032 0.034 0.036
Katz-Bonacich Centrality

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Be
tw

ee
ne

ss
 C

en
tra

lit
y

2016
2018
2020
2022

Figure 7: Empirical Dependency Network Sample (relationship between Katz-Bonacich and Be-
tweenness centrality at the project level)

51

Relative Frequency

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Figure 8: Project-level Heterogeneity in Reduced Form Estimates for Equation (5) and Equation (6).

52

2010 2012 2014 2016 2018 2020 2022
Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

,

Figure 9: Temporal Heterogeneity in Reduced Form Estimates for Equation (5) and Equation (6).

53

(a) Pr(Gij = 1) as β varies

(b) Pr(Gij = 1) as σ2
j varies

Figure 10: Comparative Statics – Probability of dependency formation, Pr(Gij = 1), as risk aversion,
ri, varies.

54

B Tables

Table 1: Empirical Node.js Dependency Network Sample Descriptive Statistics

Notation Measure Obs. Mean SD Min Median Max
xit Project Contribution: Cumulative

total of commits to project i at time t.
206,598 2,703 6,573 1 195 81,641∑

j ̸=i Gijtxjt Dependency Contribution: Cumu-
lative total of commits to project i’s
dependencies.

206,598 1,451 19,427 0 0 1,098,604

yit Project Quality: Sum of (log) com-
plexity and cumulative contributors
(log), scaled to [0, 1].

206,598 0.363 0.199 0 0.334 1

∑
j ̸=i Gijtyjt Dependency Quality: Sum of qual-

ity for project i’s dependencies.
206,598 0.225 1.236 0 0 55.2

ωit Time Allocation: Cumulative
project labor hours.

206,598 2,909 7,571 2 202 105,504

Wit Contributors: Cumulative number of
contributors.

206,598 233 983 1 20 17,195

Wit Core Contributors: Smallest num-
ber of cumulative contributors with
≥80% of total contribution.

206,598 20 233 1 1 4,421

Wit Bus Factor: Ratio of core contribu-
tors to total contributors.

206,598 0.209 0.260 0.003 0.121 1

Wit Files: Number of files in codebase. 206,598 2,692 7,109 1 26 65,724
Wit SLOC: Single lines of code in code-

base.
206,598 129,556 326,412 2 2,717 2,974,829

Wit Modularity: Ratio of file count to
SLOC.

206,598 222 2,528 1.87 50.5 74,349

Wit Documentation: Ratio of com-
mented lines to SLOC.

206,598 0.110 0.172 0 0.046 3.18

Wit Number of languages: Count of dis-
tinct programming languages.

206,598 7.87 3.34 1 7 29

Wit Project Age: Days since first com-
mit.

206,598 1,240 987 0 1,019 4,278

doutit ≡
∑

j ̸=i Gijt Upstream Dependencies: Num-
ber of external project dependencies
project i declares.

161,211 2 3.76 0 1 74

dinit ≡
∑

j ̸=i Gjit Downstream Dependents: Number
of external projects that depend on
project i.

161,211 5 7.94 0 2 66

55

Table 2: Reduced Form – Effect of Upstream Dependencies on Project Contribution

Project Commits

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 2,653*** -68.19***

(14.51) (9.744)
Dependency Commits 0.034*** 0.000*** 0.003*** 0.007*** 0.002 0.000* 0.000 -0.000

(0.002) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
Project Quality 156.2*** 959.5 126.9*** 790.1***

(22.26) (518.5) (19.57) (322.0)
Contributors 0.101*** 0.546* 0.211*** 1.542*

(0.017) (0.276) (0.034) (0.742)
Bus Factor 18.96*** 68.50* 7.401* 6.286

(3.851) (32.56) (2.928) (21.80)
SLOC 0.000*** 0.000 0.000*** 0.000

(0.000) (0.000) (0.000) (0.000)
Documentation -6.203 108.5 9.413*** 136.5*

(3.201) (67.99) (3.578) (61.60)
Modularity -0.001*** -0.001 -0.001*** -0.002

(0.000) (0.001) (0.000) (0.001)
Languages 6.423*** 7.306 5.836*** 2.513

(0.996) (11.41) (0.973) (11.57)
Age -0.012*** -0.002 -0.017*** -3.617

(0.002) (0.026) (0.004) (2.415)
Controls ✓ ✓ ✓ ✓
Project FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
R2 0.010 0.999 0.964 0.674 0.988 0.999 0.999 0.999
Observations 206,598 202,905 206,575 201,336 201,308 202,869 196,930 196,894

Note: This table contains coefficient estimates from ordinary least squares (OLS) and fixed effect (FE) estimates for the
reduced form relationship between project contribution and upstream dependency contribution in Equation (5). Specification
variations are reported in columns. Standard errors, heteroskedasticity-robust for OLS and clustered by project for FE
models, are reported in parentheses below each coefficient. Additional covariate controls not reported in the table include 3
lags each of project commits and dependency commits and the square of project age. All terms rounded to four significant
figures. Statistical significance indicators: *** ⇒ p ≤ 0.001, *** ⇒ p ≤ 0.01, and * ⇒ p ≤ 0.1 where p is the p-value for the
coefficient estimate.

56

Table 3: Reduced Form Equation (5) – Effect of Upstream Dependencies on Project Quality

Project Quality

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 0.302*** 0.002***

(0.001) (0.049)
Dependency Quality 0.017*** 0.000 0.004*** 0.009*** 0.002 0.001 0.000** 0.000

(0.001) (0.000) (0.002) (0.001) (0.001) (0.001) (0.000) (0.001)
Project Commits 0.000*** 0.000 0.000* 0.000*** 0.000*** 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.063) (0.047) (0.052)
Contributors 0.000 -0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.002)
Bus Factor -0.003*** -0.007*** -0.003*** -0.007***

(0.000) (0.001) (0.000) (0.001)
SLOC -0.000 0.000 -0.000 -0.000

(0.000) (0.000) (0.000) (0.001)
Documentation 0.001*** 0.002*** 0.001*** 0.003

(0.000) (0.000) (0.000) (0.003)
Modularity 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Languages 0.000*** 0.002*** 0.000*** 0.002

(0.000) (0.000) (0.000) (0.002)
Age 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)
Controls ✓ ✓ ✓ ✓
Project FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
R2 0.514 0.999 0.966 0.764 0.987 0.999 0.999 0.999
Observations 206,598 202,905 206,575 201,336 201,308 202,869 196,930 196,894

Note: This table contains coefficient estimates from ordinary least squares (OLS) and fixed effect (FE) estimates for the
reduced form relationship between project quality and upstream dependency quality in Equation (6). Specification variations
are reported in columns. Standard errors, heteroskedasticity-robust for OLS and clustered by project for FE models, are
reported in parentheses below each coefficient. Additional covariate controls not reported in the table include 3 lags each
of project quality and dependency quality and the square of project age. All terms rounded to four significant figures.
Statistical significance indicators: *** ⇒ p ≤ 0.001, *** ⇒ p ≤ 0.01, and * ⇒ p ≤ 0.1 where p is the p-value for the
coefficient estimate.

57

Table 4: Reduced Form Equations (7) and (8) – Effect of Project Features on Dependency
Formation

of Upstream Dependencies # of Downstream Dependents

(1) (2) (3) (4) (5) (6) (7) (8)
Constant 0.720*** 4.720***

(0.121) (0.147)
Project Commits -0.000 -0.000 0.000 -0.000 0.001 0.000 0.001 0.001

(0.027) (2.493) (0.126) (0.000) (0.038) (0.001) (0.210) (0.001)
Upstream Commits -0.000 -0.000 -0.000 -0.000 0.000 0.000** 0.000 0.000**

(0.001) (0.205) (0.028) (0.000) (0.017) (0.000) (0.038) (0.000)
Project Quality 3.073*** 4.898*** 5.180*** 4.306* 3.935*** 7.444 5.850*** 5.350

(0.029) (0.255) (0.002) (1.986) (0.098) (4.481) (0.044) (3.444)
Upstream Quality 3.000*** 1.227*** 2.818*** 1.176*** -1.683*** -0.313*** -1.585*** -0.327***

(0.005) (0.037) (0.030) (0.222) (0.012) (0.089) (0.035) (0.080)
of Contributors -0.000 0.000 -0.001 0.002 -0.009*** -0.002 -0.008 -0.004

(0.001) (0.019) (0.000) (0.001) (0.003) (0.003) (0.005) (0.004)
Bus Factor -0.181*** 0.078*** -0.227*** 0.215 -1.098*** 0.595 -0.787*** 1.040*

(0.010) (0.003) (0.000) (0.243) (0.018) (0.667) (0.001) (0.526)
SLOC -0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000*

(0.004) (0.037) (0.005) (0.000) (0.016) (0.000) (0.001) (0.000)
Documentation -0.941*** -0.979*** -1.170*** -0.873 4.325*** 2.607* 4.640*** 2.513***

(0.058) (0.042) (0.001) (0.544) (0.124) (1.047) (0.005) (0.697)
Modularity -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000

(0.005) (0.010) (0.002) (0.000) (0.012) (0.000) (0.009) (0.000)
of Languages -0.055*** -0.036 -0.061 0.002 -0.575*** -0.272 -0.427** -0.280

(0.002) (0.693) (0.063) (0.001) (0.005) (0.217) (0.156) (0.166)
Age -0.000 -0.000 -0.000 -0.000 0.002 0.002*** 0.004 -0.056

(0.002) (0.004) (0.001) (0.000) (0.004) (0.000) (0.003) (0.067)
Project FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓
R2 0.535 0.875 0.622 0.899 0.143 0.946 0.384 0.965
Observations 161,211 161,183 161,211 161,175 161,211 161,183 161,211 161,275

Note: Columns (1) through (4) report coefficient estimates for the specification in Equation (7), a regression of the number
of upstream dependencies for a given project (i.e., out-degree) on observable project characteristics. Columns (5) through
(8) report coefficient estimates for the specification in Equation (8), a regression of the number of downstream dependents
for a given project (i.e., in-degree) on observable project characteristics.

58

Table 5: Counterfactual Analysis

Counterfactual Details Welfare
(∆%)

Project
Quality
(∆%)

Contribution
(∆%)

Costs
(∆%)

Minimize Risk Aversion (r′i = min(ri) ∀i ∈ N) 0.22 0.40 0.00 0.00
r → r′ Increase risk aversion (r′i = ri + σr ∀i ∈ N) -0.07 -0.09 0.00 0.00

Maximize Risk Aversion (r′i = 1 ∀i ∈ N) -0.04 2.11 0.00 0.00
Reduce quality volatility (Σ′ = 0.5Σ) 0.00 0.19 0.00 0.00

Σ → Σ′ Increase quality volatility (Σ′ = 2Σ) 0.00 1.51 0.00 0.00
Increase quality volatility (Σ′ = 4Σ) 0.05 1.14 0.00 0.00
Remove top package 0.00 0.03 0.00 0.00

Key Package Analysis Remove top 10 packages -0.07 -5.73 -1.30 -0.87

59

C Mathematical Details

C.1 Alternative Representations for the Maintainer’s Problem

We note that the maintainer’s cost minimization problem presented in Equation 13 can have al-
ternative representations that under certain conditions, can deliver an equivalent set of equilibria.
Alternative representations can be helpful during estimation. First, the cost minimization problem
of Equation 13 is presented here in Equation P1:

min
xi≥0,yi,{Gij}j ̸=i

ci(x,G)

s.t. ui(x, y,G) ≥ ui

(P1)

Alternatively, a project maintainer could equivalently be modelled as maximizing expected project
quality subject to a cost constraint.

max
xi≥0,yi,{Gij}j ̸=i

ui(x, y,G)

s.t. ci(x,G) ≤ ωi

(P2)

Notice that by assumptions over ui and ci, both P1 and P2 are convex problems in xi. Finally,
the decision problem can be reframed to make it more amenable to established network formation
estimation procedures (Hsieh et al., 2022). Consider P3, in which contribution cost is embedded
into the maintainer’s utility function:

max
xi≥0,yi,{Gij}j ̸=i

E [vi (γyi(x,G)− ci(x,G))] (P3)

Note that the parameter γ can be interpreted as converting project quality into the value the
maintainer places on the project in terms of time saved for some computing task. Hence, γyi − ci
is the net value of project i in measured in hours.

The following proposition establishes an equivalence between the solutions of P1, P2, and P3.

Proposition 1 (Equivalence between P1, P2, and P3). Assume x⋆i > 0.

1. The solutions to P1 and P3 coincide if the minimum project quality threshold binds: ui(x, y,G) =
ui.

2. The solutions to P2 and P3 coincide if the contribution cost constraint binds: ci(x,G) = ωi.

Proof. The Lagrangian for P1

Li(xi, G;λi) = ci(x,G) + λi (ui − ui(x,G))

60

First Order Necessary Conditions (FONCS) for P1:

∂ci
∂xi
− λi

∂ui
∂xi
≤ 0

xi

(
∂ci
∂xi
− λi

∂ui
∂xi

)
= 0

xi ≥ 0

ui(x,G) ≥ ui

λi(ui − ui(x,G)) = 0

λi ≥ 0

(21)

The Lagrangian for P2

Li(xi, G;µi) = −ui(xi, G) + µi (ci(xi, G)− ωi)

First Order Necessary Conditions (FONCS) for P2:

−∂ui
∂xi

+ µi
∂ci
∂xi
≤ 0

xi

(
−∂ui
∂xi

+ µi
∂ci
∂xi

)
= 0

xi ≥ 0

ci(xi, G) ≤ ωi

µi(ci(xi, G)− ωi) = 0

µi ≥ 0

(22)

Finally, the FONCs for P3:

−γ ∂yi
∂xi

+
∂ci
∂xi
≤ 0

xi

(
−γ ∂yi

∂xi
+

∂ci
∂xi

)
= 0

xi ≥ 0

(23)

If xi > 0, then ∂ci
∂xi

= λi
∂ui
∂xi

, µi
∂ci
∂xi

= ∂ui
∂xi

, and ∂ci
∂xi

= γ ∂yi
∂xi

for P1, P2, and P3 respectively.

Case 1: Suppose the minimum utility threshold constraint from P1 binds. Then λi > 0 and since
∂ui
∂xi

> 0 under the exponential utility Assumption 1, then ∂ci
∂xi

. Then further assuming that γ ∂yi
∂xi

> 0,
then the equilibrium solutions to P1 and P3 coincide if and only if for each x⋆i

∂ci
∂xi

= λi
∂ui
∂xi

= γ
∂yi
∂xi

> 0

Case 2: Suppose the contribution cost constraint in P2. Then µi > 0. Similar to the argument in
Case 1, the equilibria of P1 and P3 coincide if and only if for each i ∈ N

∂ci
∂xi

=
1

µi

∂ui
∂xi

= γ
∂yi
∂xi

> 0

61

■

Proposition 1 implies that in the edge case where both the cost and minimum quality constraints
bind, all representations of the maintainer’s problem result in the same solution and how the La-
grange multipliers of P1 and P2 correspond to the parameter γ in P3. We use the result of this
proposition along with its assumptions to simplify estimation.

Remark (Equilibrium Contribution in Equation 14). The exposition in Proposition 1, although
tedious and perhaps a bit excessive, makes clear the relationship between observed equilibria (e.g.,
xi > 0 or ci(x,G) = ωi) and the equilibrium conditions implied by each of the FONCs of P1, P2,
and P3. The parameter ai, representing maintainer i’s intrinsic marginal cost of contribution, one
would obtain from estimating Equation 14 does not exactly, equal ai from Equation 10. Instead,
for the purposes of estimation in Section 6.3, we assume that the cost constraint binds. Then by
Proposition 1, we replace ai in Equation 14 with ãi = ai + γbi for the purposes of estimation. This
should have no effect on the exposition in Section 6.

C.2 Expected Project Quality

Under Assumption (2), maintainer utility becomes

ui(x
⋆, y⋆, G) = E [vi (y

⋆
i)]

= E

−exp
−ri

∑
j

Bij(bjx
⋆
j + ξj)


= −exp

−ri∑
j

Bijbjx
⋆
j

E

exp
−ri∑

j

Bijξj


= −exp

−ri∑
j

Bijbjx
⋆
j

 exp

r2i
2

∑
j

B2
ijσ

2
j


= −exp

−ri∑
j

Bij

(
bjx

⋆
j −

ri
2
Bijσ

2
j

)

(24)

The third line of (24) follows from Assumption 2 on maintainer information sets. By the normality
of ξ established by Assumption (2), the fourth line of Equation (24) uses the moment generating
function for a linear combination of the normally distributed random vector ξ.

62

C.3 Optimal Dependency Formation

Following Fosgerau and Bierlaire (2009), let ϵ+ij = −λ ln(ε+ij) and ϵ−ij = −λ ln(ε−ij) where λ > 0.
Under Assumption 5, we can show

Pr(Gij = 1) = Pr
(
u+ijε

+
ij ≥ u−ijε

−
ij

)
= Pr

(
− ln(−u+ij)− ln(ε+ij) ≥ − ln(−u−ij)− ln(ε−ij)

)
= Pr

(
u+ij + ϵ+ij ≥ u−ij + ϵ−ij

)
= Pr (uij ≥ ϵij)

(25)

where (u+ij , u
−
ij) ≡ (−λ ln(−u+ij),−λ ln(−u−ij)), uij ≡ u+ij − u−ij , and ϵij ≡ ϵ−ij − ϵ+ij . The advantage of

this approach is that now the equilibrium link formation decision can be represented as a random
utility with additive disturbances and is linear-quadratic in the parameter of interest, ri. If we sub-
stitute the expression for expected project quality under both G+ ij and G− ij from Equation (24)
to form u+ij and u−ij , the likelihood that maintainer i imports project j in Equation (25) becomes

Pr(Gij = 1) = Pr
(
− ln

(
E
[
exp

(
−riy+ij

)])
+ ln

(
E
[
exp

(
−riy−ij

)])
≥ ϵij/λ

)
= Pr

ri

∑
j

∆Bij

(
bj

(∑
k

∆Ajkak

)
− ri

2
∆Bijσ

2
j

) ≥ ϵij/λ



= Fϵ

ri

∑
j

∆Bijbj

(∑
k

∆Ajkak

)
︸ ︷︷ ︸

Z0ij

−1

2
r2i

∑
j

∆B2
ijσ

2
j


︸ ︷︷ ︸

Z1ij

; θϵ


(26)

where uij ≡ u+ij − u−ij , ϵij ≡ ϵ−ij − ϵ+ij , y
+
ij ≡ yi(x, y−i, G+ ij) and y−ij ≡ yi(x, y−i, G− ij). Finally, we

define ∆Bij ≡ B+
ij−B

−
ij as the difference between elements of the Leontief inverse matrices for project

quality under G+ ij and G− ij: B+ ij = [B+
ij]i,j∈N = (I − β(G+ ij))−1 and B− ij = [B−

ij]i,j∈N =

(I − β(G− ij))−1. Equivalently, we define ∆Ajk = A+
jk − A−

jk for the Leontief inverse matrices
for project contribution: A + ij = [A+

jk]j,k∈N = (I − α(G+ ij))−1 and A − ij = [A−
jk]j,k∈N =

(I − α(G− ij))−1.

For notational convenience, in the last equality of Equation (26), we rearrange uij into a quadratic
function of ri and label the coefficients Z0ij and Z1ij . These coefficients are functions of the network
G and parameters (α, a, β,Σ). In Section 6.3 and Appendix D, we show that since (α, a, β,Σ) can
be estimated using moment conditions (9) and (14) via GMM, the result in Equation (26) will
form the basis for a likelihood function for the remaining unknown parameters, r and θϵ. Hence,
under the assumptions outlined in the body of the paper, r and θϵ can be estimated via maximum
likelihood. We will assume that ϵij is a logistic random variable, independent and identically
distributed across potential links. This can arise if ϵ+ij and ϵ−ij are independent Gumbel random
variables. Therefore, Fϵ(·) is the logistic function which has the convenient property that F ′

ϵ(·) =
Fϵ(·)(1−Fϵ(·)). Furthermore, θϵ is a vector of two parameters for a logistic distribution (i.e., location
and scale). We make no specific assumption on the value of the free parameter λ other than λ > 0.

63

Therefore, the value of λ will simply influence the estimated scale parameter for the distribution of
ϵij .

64

D Estimation Details

Data is D = (xt, yt, Gt,Wt)t∈T . Parameters are θ = (a, α, b, β,Σ, r, γ, θϵ).

1. Estimate b, β given D using the project quality specification Equation (9) in separate OLS
regressions for each project i ∈ N .

yit = bixit + β
∑
j ̸=i

Gijtyjt + ξ̃it

where ξ̃it = δ′Wijt + ξit is an are other influences partitioned in observable δ′Wijt and un-
observable xit components. Furthermore, we can use the residuals of each OLS regression
to estimate Σ. Therefore the structural estimation of b, β is equivalent to the reduced form
estimation of project quality influences in Equation 6. Furthermore, our consideration of Het-
erogeneity beyond the framework of the model matches the structural estimation approach
outlined by Hsieh et al. (2022). In our setup this may allow us to control for technical aspects
of projects that at least partially determine quality or fixed costs of project contribution that
are absent from our structural discussion in Section 6.

2. Estimate a, α, γ given D and estimates for b using Proposition 1 and a modified version of the
project contribution specification in Equation 14 using OLS regressions for each project

xit = ãi + α
∑
j ̸=i

Gijtxjt + ν̃it

= ai + γbi + α
∑
j ̸=i

Gijtxjt + ν̃it

where, as before, ν̃it = δ′Wijt+νit and νit is independent and identically distributed and mean
zero in expectation.

3. (Optional) If we assume that contribution costs cit(x,G) exactly equal, conditional on some
noise or measurement error dit, estimates of time allocation ωit, we can estimate fixed costs
of contribution for each project i ∈ N using the following specifications to back out a residual
dit:

dit = ωit −
1

2
x2it + aixit + α

∑
j ̸=i

Gijtxjt

where ω, x,G are observed in D and a, α were recovered in previous steps. Taking the average
of for each project gives an estimate of the fixed costs of contribution: dit =

1
|Ti|
∑

dit where
Ti is defined as the number of time periods in which project i appears in the empirical sample.
These estimates will help refine the estimation of welfare effects under counterfactual analysis.

While we suggest that the parameters in Steps 1–3 above can be estimated with simple OLS, it
might be more prudent to organize analogs of Equations (15), (14), and (10) described above into a
set of moment conditions ans subsequently estimate (a, α, b, β,Σ, γ, d) using the generalized method
of moments (GMM) with constraints: α, β ∈ (−1, 1), σi > 0

4. Estimate r, θϵ by means of MLE, maximizing a likelihood function based on equilibrium link

65

formation described in Equation (18).

L (θ | D) =
∏
t∈T

Pr(Dt|Dt−1, θ) =
∏
t

∏
j ̸=i

Pr(Gij = 1 | Dt−1, θ)

=
∏
t

∏
j ̸=i

Fϵ (uijt)
Gijt (1− Fϵ(uijt))

1−Gijt
(27)

As mentioned previously, this likelihood function forms a Markov chain of likelihoods for the
observed sequence of linking decisions. MLE estimates for r and θϵ minimize − lnL(θ | D).

D.1 Additional simplifications to reduce computational burden

Given the size of our empirical sample, the estimation procedure as specified remains a time in-
tensive task on available hardware. In conjunction with the dimensionality reduction we discuss
in Section 6.3.1, we take a few computation shortcuts to calculate the coefficients Z0ijt and Zijt

for each sample moment t ∈ T , the project i ∈ Nt associated with that particular moment t
and each potential dependency j ̸= i ∈ Nt. First, we approximate the true matrix inverse using
A = I+

∑K
k=1 α

kGk where K = 5 provides a decent approximation. Second, following the suggestion
of Hsieh et al. (2022), we use the Sherman-Morrison formula to efficiently calculate a new proposal
Leontief inverse A or B to calculate ∆Aij and ∆Bij . Third, instead of considering proposal links
for all j ̸= i in the current network, we consider a set of randomly selected potential dependencies
from Nt that is (1) equal in size to the set of current dependencies for project i and (2) contains
potential dependencies not in the current set of dependencies for project i.

66

	Introduction
	Literature
	Framework
	Setting
	Risk Embedded in Dependency Network Structure
	A Maintainer's Choice Between Risky Alternatives
	Fragile Dependency Networks

	Data
	Sampling Procedure
	Measuring Software Quality
	Descriptive Statistics

	Reduced Form
	Contribution Levels
	Project Quality
	Dependency Formation
	Robustness
	Summary

	Structural Approach
	Setup
	Equilibrium
	Estimation

	Counterfactual Analysis
	Reducing Fluctuations in Project Quality
	Increasing Developer Risk Aversion
	Key Projects
	Summary

	Discussion
	Figures
	Tables
	Mathematical Details
	Alternative Representations for the Maintainer's Problem
	Expected Project Quality
	Optimal Dependency Formation

	Estimation Details
	Additional simplifications to reduce computational burden

