
No Free Lunch For Programmers: Digital Supply
Chains and the Economics of Software

Dependency Management

Sam Boysel

University of Southern California
Department of Economics

October 16, 2022

Outline

Introduction

Framework

Data

Reduced Form

Structural Approach

Discussion

Details

Introduction

▶ Modern software borrows 70− 90% functionality from external OSS
projects (Nagle et al., 2022)

▶ Downstream dependents import functionality from upstream
dependencies

▶ Software dependency network resembles digital supply chain for
public information good production

▶ Benefits: lower development costs, design modularity,
specialization

▶ Costs: maintenance and risk externalities

▶ Question(s): Can we estimate value created by dependency
networks? How does a maintainer balance benefits and risk of
dependency usage? What are the equilibrium implications for
welfare and network structure?

Introduction 1 / 13

Background & Motivation

▶ OSS dependency networks are intricate, widely leveraged public
goods infrastructure (Eghbal, 2016)

▶ Public policy interest in OSS supply chain security (Executive Order
14028, 2021)

▶ High-profile disruptions and exploits

▶ left-pad: Abrupt removal of 17 lines of code caused
disruptions in 2% of all Node.js packages

▶ Equifax breach: 147 million users exposed, $425 million USD
in restitution (US FTC, 2022)

▶ Other: Heartbleed, SolarWinds, log4j

▶ Average cost of data breach: $4.24 million USD (IBM, 2021)

empirical setting

Introduction 2 / 13

Contribution

This study

▶ Empirical study of software dependency network formation and
influence.

▶ Place focus on project maintainer’s decisions over (1) internal
development and (2) usage of external software.

▶ Reduced form: productivity and quality effects of upstream
dependencies on downstream dependents

▶ Structural model: micro-founded strategic network formation in
which risk averse maintainer makes decisions under uncertainty.

▶ Data: network panel of 1,263 Node.js projects observed from
2011-2022: (1) network structure and (2) individual project
characteristics.

▶ Counterfactuals: (1) modify risk aversion profile, (2) project
quality volatility, and (2) remove key projects from the network.

Introduction 3 / 13

Preview of Results

▶ Reduced form: upstream dependencies have limited influence on
downstream behaviors, on average.

▶ Stronger complementarity in earlier sample periods

▶ Quality dependencies are well documented and have “lower bus
factors”

▶ Structural model: individual project characteristics largely drive
network formation.

▶ Increased maintainer risk aversion generates downstream value that
offsets costs in aggregate.

▶ Externalities: removing ≤ 1% of sample’s “core dependencies”
reduces aggregate project quality by ≥ 5% for remaining peers.

Introduction 4 / 13

Literature

▶ Empirical Software Engineering Kikas et al. (2017), Decan et al.
(2019), Decan and Mens (2019)

▶ Make vs. buy (Coase, 1937; Williamson, 1975, 1985) and vertical
integration (Grossman and Hart, 1986)

▶ Micro-foundations for network formation under risk (Blume et al.,
2013; Ková̌ŕık and Van der Leij, 2014)

▶ Supply chain risk and multi-sourcing (Elliott et al., 2022)

▶ Strategic Network Formation: Ballester et al. (2006), Snijders et al.
(2010), Hsieh et al. (2022)

Introduction 5 / 13

Framework

Downstream Upstream

i j k

← Inherited functionality−

Figure: Project i depends on directly project j and project j depends
directly on project k. We say project k is an indirect dependency of
project i . Additional terminology: Project k is upstream of both projects
i and j . Project i is downstream of both projects j and k . The
dependence relationship runs in the opposite direction of the flow of
inherited functionality.

risk and network structure a maintainer’s choice fragility

project quality and contribution costs preferences and UMP

Framework 6 / 13

Data

▶ Network panel: 1263 Node.js (JavaScript) packages
observed from October 2010 through September 2022

1. Dependency declarations
2. Socio-technical features: number of contributors, number of

commits, age, size, documentation, modularity, churn,
cyclomatic complexity, “bus factor”

3. Derive a measure of quality = log(complexity) + log(#
contributors)

▶ Upstream sample: start with 10 most depended upon
packages, traverse (upstream) dependency tree recursively

▶ Use of software version control to “rewind” software source
code

Snapshot of dependency network sample Sampling procedure Descriptive Statistics

Data 7 / 13

Reduced Form: Contribution
Relation between upstream and downstream contribution (xit)

xit︸︷︷︸
Downstream

= ai + α
∑
j ̸=i

Gijtxjt︸ ︷︷ ︸
Upstream

+δ′Wit + ϵit (1)

▶ α > 0 (< 0) implies upstream and downstream contribution are
complements (substitutes)

▶ Identification: (1) dependencies formed unilaterally, (2) scope for
coordination possible but limited, (3) use project FEs for OVB
concerns

▶ Findings: α small and positive on average, virtually 0 when
controlling for project FEs

▶ Robustness: α stronger in earlier sub-sample periods. Small,
centered around 0 at project-level.

estimates

Reduced Form 8 / 13

Reduced Form: Quality

Relation between upstream and downstream project quality (yit)

yit = b0i + b1ixi + β
∑
j ̸=i

Gijtyjt + δ′Wit + ϵit (2)

▶ β > 0 (< 0) implies quality in upstream dependencies improves
(diminishes) quality of downstream dependents

▶ Findings: β small and positive on average, virtually 0 when
controlling for project FEs

▶ Robustness: β similar in all sub-sample periods. Small, centered
around 0 at project-level.

estimates

Reduced Form 9 / 13

Reduced Form
Number of upstream dependencies

dout
ijt = δ′Wit + ϵijt (3)

Number of downstream dependents

d in
ijt = δ′Wit + ϵijt (4)

Findings:

▶ Higher quality packages declare more dependencies

▶ Core dependencies well documented, fewer upstream dependencies
themselves.

▶ Virtually no effect of project size (commits or SLOC), number of
contributors, modularity, age

▶ Some evidence that core dependencies have higher “bus factor”:
reliant on small group of contributors

estimates

Reduced Form 10 / 13

Structural Approach

▶ Maintainer’s problem: choose (1) level of development effort
and (2) set of dependency relationships to minimize
development costs and maintain project quality.

▶ Key feature: maintainers averse to uncertainty over
dependency project quality

▶ Equilibrium: sequential game with myopic maintainers

▶ Data generating process: Characterizes co-evolution of
software dependency network relationships and development
levels

setup equilibrium comparative statics estimation

Structural Approach 11 / 13

Counterfactual Analysis

1. Modify maintainer risk aversion

2. Modify project quality uncertainty

3. Remove key packages

estimates

Structural Approach 12 / 13

Discussion

▶ Recap:
▶ Software dependency networks embed complex economic

tradeoffs
▶ Externalities are present but nuanced
▶ Upstream dependencies create value via complementarity
▶ Disruptions in core packages cause disruptions downstream at

scale

▶ Policy: transparency, automation, public sponsorship of
critical projects are ongoing efforts

▶ Future directions: consider alternative measures of quality,
shift focus onto fixed costs of development

Discussion 13 / 13

Details

Background: Empirical Setting

▶ npm (Node.js Package Manager) ecosystem.

▶ 2.6 million packages (Katz, 2020)
▶ Example: babel-loader

▶ Registry Listing:
https://www.npmjs.com/package/babel-loader

▶ Source Code Repository:
https://github.com/babel/babel-loader

back

https://www.npmjs.com/package/babel-loader
https://github.com/babel/babel-loader

Framework: Risk and Network Structure

i

j

k

l

m

n

(a) Indirect Network

i

j

k

l

m

n

(b) Hub Network

Figure: The network in Panel 2a is subject to more indirect risk than the
network in Panel 2b. When considering the extent of both direct and
indirect dependence, project n is the most critical project in both
networks.

back

Framework: The Maintainer’s Dilemma

i

j

k

l

m

n

(a)

i

j

k

l

m

n

(b)

Figure: In Panel 3a, maintainer i prefers depending on project k over
project l and avoids a greater level of indirect risk embedded in project l .
In Panel 3b, maintainer i prefers l to j despite a greater level of indirect
risk embedded by project l .

back

Framework: Network Fragility (1/2)

i

j

k

l

m

n

(a) Central project is low risk

i

j

k

l

m

n

(b) Central project is high risk

Figure: Different project characteristics can influence system-wide
fragility for networks with identical structure.

back

Framework: Network Fragility (2/2)

i

j

k

l

m

n

(a) Structure isolates risk

i

j

k

l

m

n

(b) Structure amplifies risk

Figure: Different network structures can influence overall network fragility
when projects characteristics are held constant.

back

Framework: Project Quality and Contribution Costs

Project Quality

yi (x , y−i ,G) = bixi + β
∑
j ̸=i

Gijyj + ξi (5)

Contribution Costs

ci (x ,G) =
1

2
x2i −

ai + α
∑
j ̸=i

Gijxj

 xi (6)

back

Framework: Maintainer Preferences

von Neumann-Morgenstern utility: maintainer has a stronger
preference for software stability as ri →∞:

ui (x , y ,G) = E
[
−e−riyi

]
(7)

Cost Minimization: Maintainer i chooses (y⋆i , x
⋆
i , {G ⋆

ij }j ̸=i) such
that

(y⋆i , x
⋆
i , {G ⋆

ij }j ̸=i) = argmin
yi ,xi>0,{Gij}j ̸=i

ci (x ,G)

s.t. ui (x , y ,G) ≥ ui

(8)

back

Data: Sample Dependency Network (September 2022)

back

Data: “Upstream” Sampling Procedure

1. Let k = 0. Begin with a set of the 10 most depended-upon
packages in the Node.js ecosystem, Nk .

2. For each i ∈ Nk , get a list of timestamps t for the published
minor versions of package i , Ti
▶ For each t ∈ Ti , add the set of packages i declares as runtime

dependencies to the running set of sampled packages:

{j ∈ N | Gijt = 1} ∪ Nk → Nk+1

▶ Return to Step 2 using Nk+1

3. Limit the search depth to 5th degree dependencies (k ≤ 5).

Note: result is a set critical core dependencies in the Node.js
ecosystem. Lower bound for estimates of network externalities.

back

Data: Descriptive statistics

Notation Measure Obs. Mean SD Min Median Max
xit Project Contribu-

tion
206,598 2,703 6,573 1 195 81,641∑

j ̸=i Gijtxjt Dependency Contri-
bution

206,598 1,451 19,427 0 0 1,098,604

yit Project Quality 206,598 0.363 0.199 0 0.334 1∑
j ̸=i Gijtyjt Dependency Quality 206,598 0.225 1.236 0 0 55.2

ωit Time Allocation 206,598 2,909 7,571 2 202 105,504
Wit Contributors 206,598 233 983 1 20 17,195
Wit Core Contributors 206,598 20 233 1 1 4,421
Wit Bus Factor 206,598 0.209 0.260 0.003 0.121 1
Wit Files 206,598 2,692 7,109 1 26 65,724
Wit SLOC 206,598 129,556 326,412 2 2,717 2,974,829
Wit Modularity 206,598 222 2,528 1.87 50.5 74,349
Wit Documentation 206,598 0.110 0.172 0 0.046 3.18
Wit Number of lan-

guages
206,598 7.87 3.34 1 7 29

Wit Project Age 206,598 1,240 987 0 1,019 4,278
doutit Upstream Depen-

dencies
161,211 2 3.76 0 1 74

d init Downstream De-
pendents

161,211 5 7.94 0 2 66

back

Reduced Form: Contribution

Project Commits

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 2,653*** -68.19***
(14.51) (9.744)

Dependency Commits 0.034*** 0.000*** 0.003*** 0.007*** 0.002 0.000* 0.000 -0.000
(0.002) (0.000) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)

Project Quality 156.2*** 959.5 126.9*** 790.1***
(22.26) (518.5) (19.57) (322.0)

Contributors 0.101*** 0.546* 0.211*** 1.542*
(0.017) (0.276) (0.034) (0.742)

Bus Factor 18.96*** 68.50* 7.401* 6.286
(3.851) (32.56) (2.928) (21.80)

SLOC 0.000*** 0.000 0.000*** 0.000
(0.000) (0.000) (0.000) (0.000)

Documentation -6.203 108.5 9.413*** 136.5*
(3.201) (67.99) (3.578) (61.60)

Modularity -0.001*** -0.001 -0.001*** -0.002
(0.000) (0.001) (0.000) (0.001)

Languages 6.423*** 7.306 5.836*** 2.513
(0.996) (11.41) (0.973) (11.57)

Age -0.012*** -0.002 -0.017*** -3.617
(0.002) (0.026) (0.004) (2.415)

Controls ✓ ✓ ✓ ✓
Project FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓

R2 0.010 0.999 0.964 0.674 0.988 0.999 0.999 0.999
Observations 206,598 202,905 206,575 201,336 201,308 202,869 196,930 196,894

Note: This table contains coefficient estimates from ordinary least squares (OLS) and fixed effect (FE) estimates for the reduced form relationship between project
contribution and upstream dependency contribution in Equation (1). Specification variations are reported in columns. Standard errors, heteroskedasticity-robust
for OLS and clustered by project for FE models, are reported in parentheses below each coefficient. Additional covariate controls not reported in the table include
3 lags each of project commits and dependency commits and the square of project age. All terms rounded to four significant figures. Statistical significance
indicators: *** ⇒ p ≤ 0.001, *** ⇒ p ≤ 0.01, and * ⇒ p ≤ 0.1 where p is the p-value for the coefficient estimate.

back

Reduced Form: Quality

Project Quality

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.302*** 0.002***
(0.001) (0.049)

Dependency Quality 0.017*** 0.000 0.004*** 0.009*** 0.002 0.001 0.000** 0.000
(0.001) (0.000) (0.002) (0.001) (0.001) (0.001) (0.000) (0.001)

Project Commits 0.000*** 0.000 0.000* 0.000*** 0.000*** 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.063) (0.047) (0.052)

Contributors 0.000 -0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.002)

Bus Factor -0.003*** -0.007*** -0.003*** -0.007***
(0.000) (0.001) (0.000) (0.001)

SLOC -0.000 0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.001)

Documentation 0.001*** 0.002*** 0.001*** 0.003
(0.000) (0.000) (0.000) (0.003)

Modularity 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Languages 0.000*** 0.002*** 0.000*** 0.002
(0.000) (0.000) (0.000) (0.002)

Age 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000)

Controls ✓ ✓ ✓ ✓
Project FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓

R2 0.514 0.999 0.966 0.764 0.987 0.999 0.999 0.999
Observations 206,598 202,905 206,575 201,336 201,308 202,869 196,930 196,894

Note: This table contains coefficient estimates from ordinary least squares (OLS) and fixed effect (FE) estimates for the reduced form relationship between project
quality and upstream dependency quality in Equation (2). Specification variations are reported in columns. Standard errors, heteroskedasticity-robust for OLS
and clustered by project for FE models, are reported in parentheses below each coefficient. Additional covariate controls not reported in the table include 3 lags
each of project quality and dependency quality and the square of project age. All terms rounded to four significant figures. Statistical significance indicators: ***
⇒ p ≤ 0.001, *** ⇒ p ≤ 0.01, and * ⇒ p ≤ 0.1 where p is the p-value for the coefficient estimate.

back

Reduced Form: Dependency Formation

of Upstream Dependencies # of Downstream Dependents

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.720*** 4.720***
(0.121) (0.147)

Project Commits -0.000 -0.000 0.000 -0.000 0.001 0.000 0.001 0.001
(0.027) (2.493) (0.126) (0.000) (0.038) (0.001) (0.210) (0.001)

Upstream Commits -0.000 -0.000 -0.000 -0.000 0.000 0.000** 0.000 0.000**
(0.001) (0.205) (0.028) (0.000) (0.017) (0.000) (0.038) (0.000)

Project Quality 3.073*** 4.898*** 5.180*** 4.306* 3.935*** 7.444 5.850*** 5.350
(0.029) (0.255) (0.002) (1.986) (0.098) (4.481) (0.044) (3.444)

Upstream Quality 3.000*** 1.227*** 2.818*** 1.176*** -1.683*** -0.313*** -1.585*** -0.327***
(0.005) (0.037) (0.030) (0.222) (0.012) (0.089) (0.035) (0.080)

of Contributors -0.000 0.000 -0.001 0.002 -0.009*** -0.002 -0.008 -0.004
(0.001) (0.019) (0.000) (0.001) (0.003) (0.003) (0.005) (0.004)

Bus Factor -0.181*** 0.078*** -0.227*** 0.215 -1.098*** 0.595 -0.787*** 1.040*
(0.010) (0.003) (0.000) (0.243) (0.018) (0.667) (0.001) (0.526)

SLOC -0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000*
(0.004) (0.037) (0.005) (0.000) (0.016) (0.000) (0.001) (0.000)

Documentation -0.941*** -0.979*** -1.170*** -0.873 4.325*** 2.607* 4.640*** 2.513***
(0.058) (0.042) (0.001) (0.544) (0.124) (1.047) (0.005) (0.697)

Modularity -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.000
(0.005) (0.010) (0.002) (0.000) (0.012) (0.000) (0.009) (0.000)

of Languages -0.055*** -0.036 -0.061 0.002 -0.575*** -0.272 -0.427** -0.280
(0.002) (0.693) (0.063) (0.001) (0.005) (0.217) (0.156) (0.166)

Age -0.000 -0.000 -0.000 -0.000 0.002 0.002*** 0.004 -0.056
(0.002) (0.004) (0.001) (0.000) (0.004) (0.000) (0.003) (0.067)

Project FE ✓ ✓ ✓ ✓
Time FE ✓ ✓ ✓ ✓

R2 0.535 0.875 0.622 0.899 0.143 0.946 0.384 0.965
Observations 161,211 161,183 161,211 161,175 161,211 161,183 161,211 161,275

Note: Columns (1) through (4) report coefficient estimates for the specification in Equation (3), a regression of the number of upstream dependencies for a
given project (i.e. out-degree) on observable project characteristics. Columns (5) through (8) report coefficient estimates for the specification in Equation (4), a
regression of the number of downstream dependents for a given project (i.e. in-degree) on observable project characteristics.

back

Structural: Setup (1/2)

Project Quality

yi (x , y−i ,G) = bixi + β
∑
j ̸=i

Gijyj + ξi (9)

Information Sets
ξi ∼ N(0, σ2

i) (10)

Commonly known only in distribution to all maintainers.
back

Structural: Setup (2/2)

Contribution Costs

ci (x ,G) =
1

2
x2i −

ai + α
∑
j ̸=i

Gijxj

 xi (11)

Maintainer Preferences:

ui (x , y ,G) = E
[
−e−riyi

]
(12)

back

Structural: Equilibrium (1/5)

Maintainer i ’s cost-minimization problem under uncertainty

min
yi ,xi>0,{Gij}j ̸=i

1

2
x2i −

ai + α
∑
j ̸=i

Gijxj

 xi (Cost)

s.t. E
[
−e−riyi

]
≥ ui (Utility)

yi = bixi + β
∑
j ̸=i

Gijyj + ξi (Quality)

ξi ∼ N(0, σ2
i) (Uncertainty)

(13)

back

Structural: Equilibrium (2/5)

Timing: at each sample moment t ∈ T is presented with an
opportunity to re-evaluate her dependency relationships

1. Maintainer i chooses set of optimal dependencies, {G ⋆
ijt}j ̸=i

2. All maintainers i , j ∈ N determine optimal contribution levels
for their projects, x⋆ijt > 0.

back

Structural: Equilibrium (3/5)

Optimal level of project development

x⋆i = ai + α
∑
j ̸=i

Gijx
⋆
j

=
∑
j

Aijaj
(14)

Equilibrium Project Quality

y⋆
i = bi

ai + α
∑
j ̸=i

Gijx
⋆
j

+ β
∑
j ̸=i

Gijy
⋆
j + ξi

=
∑
j

Bij

(
bj

(∑
k

Ajkak

)
+ ξj

) (15)

where A = (I − αG)−1 and B = (I − βG)−1.
back

Structural: Equilibrium (4/5)

Maintainer’s expected utility over expected project quality

ui (x
⋆, y⋆,G) = −exp

−ri ∑
j

Bij

(
bjx

⋆
j −

ri
2
Bijσ

2
j

)
= −exp

−ri ∑
j

Bij

(
bj

(∑
k

Ajkak

)
− ri

2
Bijσ

2
j

) (16)

back

Structural: Equilibrium (5/5)

Optimal Dependency Formation Decision

Gij = 1 ⇐⇒ ui (x
⋆, y⋆,G + ij) ≥ ui (x

⋆, y⋆,G − ij) (17)

Likelihood of dependency formation, Pr(Gij = 1), becomes

Fϵ

ri

∑
j

∆Bijbj

(∑
k

∆Ajkak

)
︸ ︷︷ ︸

Z0ij

−1

2
r2i

∑
j

∆B2
ijσ

2
j

︸ ︷︷ ︸

Z1ij

; θϵ

 (18)

under multiplicative linking disturbances ϵ (Fosgerau and Bierlaire, 2009)
back

Structural: Comparative Statics

1. Risk Aversion (ri):

∂Pr(Gij = 1)

∂ri

{
< 0 if Zij < ri

≥ 0 if Zij ≥ ri

since ∂Fϵ
∂z > 0 and ri > 0 and Zij ≡

Z0ij

Z1ij
, net benefit threshold.

2. Project Quality Variance (σ2
k):

∂Pr(Gij = 1)

∂σ2
k

≤ 0

back

Structural: Estimation

Observed data is D = (xt , yt ,Gt ,Wt)t∈T . Procedure to estimate
structural parameters θ = (a, α, b, β,Σ, r , θϵ):

1. Estimate (b, β) given D using the project quality specification
Equation (9) via OLS

2. Estimate (a, α) given D and estimates for b using equilibrium
contribution Equation (14) via OLS. Use residuals to estimate Σ.

3. Estimate (r , θϵ) via MLE, maximizing a likelihood function based on
equilibrium link formation described in Equation (18).

L (θ | D) =
∏
t∈T

Pr(Dt |Dt−1, θ) =
∏
t

∏
j ̸=i

Pr(Gij = 1 | Dt−1, θ)

=
∏
t

∏
j ̸=i

Fϵ (uijt)
Gijt (1− Fϵ(uijt))

1−Gijt

Note that {Pr(Dt | Dt−1)}t∈T forms a Markov chain.

back

Counterfactual

Counterfactual Welfare Project
Quality

Contribution Costs

Minimize Risk Aversion 0.22 0.40 0.00 0.00
Increase risk aversion (+1σ) -0.07 -0.09 0.00 0.00
Maximize Risk Aversion -0.04 2.11 0.00 0.00
Reduce quality volatility (-50%) 0.00 0.19 0.00 0.00
Increase quality volatility (+100%) 0.00 1.51 0.00 0.00
Increase quality volatility (+300%) 0.05 1.14 0.00 0.00
Remove top package (Katz-Bonacich) 0.00 0.03 0.00 0.00
Remove top 10 packages (Katz-Bonacich) -0.07 -5.73 -1.30 -0.87
Remove top 10 packages (Betweenness) -0.08 0.57 -0.07 0.00

Note: The elements of the four right-most columns indicate the percentage change in each aggregate
measure under the counterfactual scenario relative to the baseline equilibrium observed in the data
(September 2022).

back

	Introduction
	Framework
	Data
	Reduced Form
	Structural Approach
	Discussion
	Details

